104529 (Теория принятия решений), страница 4

2016-07-30СтудИзба

Описание файла

Документ из архива "Теория принятия решений", который расположен в категории "". Всё это находится в предмете "менеджмент" из 2 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "книги и методические указания", в предмете "менеджмент" в общих файлах.

Онлайн просмотр документа "104529"

Текст 4 страницы из документа "104529"

Как же искать смешанные стратегии? Их можно найти точно – алгебраическим способом (в частности, с помощью симплекс-метода) или графическим способом (для игры размерности 2 х n или m х 2 ).

Для того чтобы точно найти решение матричной игры в смешанных стратегиях, нужно представить заданную матричную игру в виде задачи линейного программирования и решить её симплекс-методом.

Рассмотрим матричную игру, не разрешимую в чистых стратегиях, в общем виде:

Заметим, что в матричной игре, разрешимой в чистых стратегиях, элементы платежной матрицы могут быть как положительными, так и отрицательными. Для симплекс-метода, которым будем решать игру, не разрешимую в чистых стратегиях, необходимо, чтобы элементы платежной матрицы были неотрицательными. Для этого, если в платежной матрице будут отрицательные элементы, нужно ко всем элементам платежной матрицы прибавить достаточно большое число с . При этом решение задачи не изменится, а цена игры увеличится на с.#

PA = (p1, p2, …, pm)– это оптимальная смешанная стратегия первого игрока. Её применение гарантирует первому игроку выигрыш не меньший, чем цена игры . Если при этом второй игрок выберет стратегию В1, математически все вышесказанное будет иметь вид:

а11р1 + а21р2 + … + am1pm ≥

Таких неравенств будет столько, сколько есть возможных альтернатив у второго игрока, т.е. столбцов платежной матрицы – n штук:

а11р1 + а21р2 + … + am1pm ≥

а12р1 + а22р2 + … + am2pm ≥

а1nр1 + а2nр2 + … + amnpm ≥

Разделив все неравенства на , получим (в общем виде):

а1j + а2j + … + amj ≥ 1

Обозначим: = xi, . С помощью таких новых переменных вышеуказанные неравенства запишутся в виде:

а11 x1 + а21 x2 + … + am1 xm ≥ 1

а12 x1 + а22 x2 + … + am2 xm ≥ 1

а1n x1 + а2n x2 + … + amn xm ≥ 1

Просуммируем новые переменные:

= x1 + x2 + … + xm = + + … + = =

PA = (p1, p2, …, pm)– это оптимальная смешанная стратегия первого игрока. То есть нужно так подобрать (p1, p2, …, pm) , чтобы была как можно большей. Или же, что то же самое, чтобы была как можно меньшей.

Таким образом, используя новые переменные и учитывая всё вышесказанное, исходную матричную игру можно представить в виде задачи линейного программирования:

найти вектор переменных Х = {x1, x2, … , xm}, такой что:

целевая функция f = min

при множестве ограничений:

АТХ ≥ Е

гдеА – матрица коэффициентов (платежная матрица), заданная в условии;

Е – единичный вектор

Х – вектор неизвестных переменных, такой что xi = ;

– это цена игры: = = ;

рi – это коэффициенты вектора смешанной стратегии первого игрока.

      1. 4.2.2 Решение задачи симплекс-методом

Рассмотрим числовой пример.

Пусть имеем игру с платежной матрицей:

Проверим, имеет ли наша матричная игра седловую точку? Для этого используем принцип максимина.

Выигрыш игрока А: = = 2 он достигается в первой строке.

Выигрыш игрока В:в = = 3 он достигается в четвертом столбце.

Как видим, выигрыши игроков не совпадают, значит у матрицы нет седловой точки. Значит, нужно искать смешанные стратегии.

В данном конкретном случае в множестве ограничений будет четыре неравенства (т.к. в условии задачи четыре столбца). Пересчитывать симплекс- таблицы с четырьмя строками не очень сильно хочется, поэтому удобнее решить двойственную задачу (для коэффициентов вектора смешанной стратегии второго игрока), в которой будет всего две строки (т.к. в условии задачи две строки):

найти вектор двойственных переменных Y = {y1, y2, … yn}, такой что:

целевая функция g = max

при множестве ограничений:АY ≤ Е

Для нашего примера задача линейного программирования будет такой:

найти вектор Y = {y1, y2, y3, y4}, такой что:

целевая функция g = max

при множестве ограничений:

Далее нужно вспомнить методику применения симплекс-метода и использовать её для нашей задачи.

Однако, как показывает многолетняя практика, студенты обладают так называемой "краткосрочной памятью", которая работает только до сдачи необходимого экзамена. Поэтому вспомнить сейчас методику применения симплекс-метода вряд ли кто-то сможет. Для этого нужно сходить в библиотеку, найти специальную литературу и умело ей воспользоваться. Осмелимся заметить, что и этого половина студентов сделать поленится и благополучно завалит данную тему . #

Поэтому для всеобщего блага приведем здесь методику применения симплекс-метода (пройденного и успешно сданного в математическом программировании) для нашей конкретной задачи.

1 этап – приведение задачи линейного программирования к каноническому виду.

Неравенства во множестве ограничений нужно превратить в равенства с помощью добавления искусственных переменных. Для того чтобы неравенства превратить в равенства, надо в каждое неравенство добавить (или отнять – в зависимости от знака неравенства) искусственную переменную:

Целевая функция при этом будет выглядеть так:g = y1 + y2 + y3 + y4 + 0y5 + 0y6

2 этап – определение начального опорного плана.

В полученном случае начальный опорный план будут составлять искусственные переменные, входящие в ограничения с коэффициентами +1 :{ y5 ; y6 }. Новых искусственных переменных для данной задачи вводить не требуется.

3 этап – заполнение исходной симплекс-таблицы.

Исходная симплекс-таблица для нашей двойственной задачи будет иметь вид:

В столбец "текущий базис" ставим переменные, начального опорного плана : { y5 ; y6 }.

В столбец "сi" ставим их коэффициенты в целевой функции.

В столбец "А0" ставим вектор ограничений Е : а10 = 1 ;а20 = 1 .

В самую верхнюю строку таблицы ставим коэффициенты cj при соответствующих переменных в целевой функции:c1 = 1 ; c2 = 1 ; c3 = 1 ; c4 = 1 ; c5 = 0 ; c6 = 0 .

В столбцы "А1", ...., "А6" ставим соответствующие коэффициенты матрицы ограничений А.

Вычисляем оценки по формулам

D0 = ; .Dj = – cj

и ставим их в самую нижнюю строку симплекс-таблицы (строку оценок) :

D0 = = 0 * 1 + 0 * 1 = 0D1 = – c1 = 0 * 4 + 0 * 3 – 1 = – 1

D2 = – c2 = 0 * 3 + 0 * 7 – 1 = – 1D3 = – c3 = 0 * 8 + 0 * 1 – 1 = – 1

D4 = – c4 = 0 * 2 + 0 * 3 – 1 = – 1D5 = – c5 = 0 * 1 + 0 * 0 – 0 = 0

D6 = – c6 = 0 * 0 + 0 * 1 – 0 = 0

4 этап – пересчет симплекс-таблицы.

  1. Если j 0 для всех j = 1, 2, .... , n , то данный план (в столбце "текущий базис") – оптимален. В нашем случае это условие не выполняется, значит, текущий базис можно улучшить.

  2. Если имеются k < 0 и в столбце Аk все элементы aik 0 , то целевая функция не ограничена сверху на допустимом множестве и данная задача не имеет смысла. В нашем случае видим, что целевая функция сверху ограничена.

  3. Если имеются j 0, то возможен переход к новому лучшему плану, связанному с большим значением целевой функции. У нас так и есть.

  4. Переменная хk, которую необходимо ввести в базис, для улучшения плана соответствует наименьшей отрицательной оценке j. Столбец Ak, содержащий эту оценку называется ведущим. В нашем случае все оценки одинаковы. Поэтому в качестве ведущего столбца выберем любую оценку, например, третью: k = 3.

  5. Ищем min{ ai0 / ai1 } = min{ 1/8 ; 1/1 } = 1/8– этот минимум достигается при i = 1. Значит, r = 1первая строка – ведущая. (на рисунке помечена стрелкой)

Ведущий элементark = a13 = 8 (на рисунке выделен)

  1. Заполняем новую симплекс-таблицу.

В столбец "текущий базис" вместо переменной у5 ставим переменную у3 .

В столбец "сi" ставим коэффициент переменной у3 в целевой функции.

Самая верхняя строка таблицы всегда остаётся неизменной.

Пересчитываем ведущую строку по формуле :

После этого пересчитываем остальные строки по формуле

:

вторая строка (i = 2)

Пересчитываем и заполняем строку оценок:

D0 = = 1 * + 0 * = D1 = – c1 = 1 * + 0 * – 1 = –

D2 = – c2 = 1 * + 0 * – 1 = – D3 = – c3 = 1 * 1 + 0 * 0 – 1 = 0

D4 = – c4 = 1 * + 0 * – 1 = –

D5 = – c5 = 1 * + 0 * – 0 = D6 = – c6 = 1 * 0 + 0 * 1 – 0 = 0

После этого повторяем 4 этап до тех пор, пока не будет выполнен п.1 (все j 0).

В нашем случае имеются j < 0 и наименьшая среди них 4 . Значит ведущим столбцом на данном шаге будет A4 (пометим его стрелкой).

Ищем min{ ai0 / ai4 } = min{ : ; : } = min{ ; } = – этот минимум достигается при i = 2. Значит, r = 2вторая строка – ведущая (на рисунке помечена стрелкой).

Таким образом, в новый текущий базис вместо переменной у6 надо ввести переменную у4 .

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
428
Средний доход
с одного платного файла
Обучение Подробнее