104529 (Теория принятия решений), страница 3

2016-07-30СтудИзба

Описание файла

Документ из архива "Теория принятия решений", который расположен в категории "". Всё это находится в предмете "менеджмент" из 2 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "книги и методические указания", в предмете "менеджмент" в общих файлах.

Онлайн просмотр документа "104529"

Текст 3 страницы из документа "104529"

Z =

Для случая оптимизации потерь критерий будет таким:

Z = #

Таким образом, исходную матрицу необходимо дополнить справа еще одним столбцом, в который нужно внести значения произведений всех элементов каждой строки.

Затем из элементов добавленного столбца нужно выбрать наибольший. Строка, в которой он стоит и будет оптимальной стратегией.

В нашем случае наибольший элемент в добавленном столбце 8640 (в матрице он выделен). Таким образом, в нашем примере оптимальной стратегией будет А3, т.е. инвестор должен выбрать для вложения третий проект.

Ответ А3 .

    1. 3.5 Критерий Сэвиджа

Решение опять принимается в условиях неопределенности.

Сэвидж предложил ввести в рассмотрение новую матрицу, элементы которой определяются по формуле:

rij =

Построим новую матрицу для нашего примера:

Пример вычислений для первого столбца:

= 6; r11 = 6 – 3 = 3; r21 = 6 – 4 = 2; r31 = 6 – 6 = 0; r41 = 6 – 3 = 3.

Построенная таким способом матрица называется "матрицей сожалений". И действительно, ведь каждый элемент rij выражает "сожаление" ЛПР по поводу того, что он не выбрал наилучшего решения по отношению к

Далее к матрице сожалений применяется критерий минимакса. Показатель эффективности стратегии Аi при этом находится по формуле:

Z = =

Для случая оптимизации потерь критерий будет таким:

Z = #

Таким образом, матрицу сожалений необходимо дополнить справа еще одним столбцом, в который нужно внести наибольшие значения элементов каждой строки.

Затем из элементов добавленного столбца нужно выбрать наименьший. Строка, в которой он стоит и будет оптимальной стратегией.

В нашем случае наименьший элемент в добавленном столбце 5 (в матрице он выделен). Таким образом, в нашем примере оптимальной стратегией будет А3, т.е. инвестор должен выбрать для вложения третий проект.

Ответ А3 .

    1. 3.6 Критерий Гурвица

Решение принимается в условиях неопределенности.

Гурвиц предложил критерий, показатель эффективности стратегии Аi при котором находится где-то между точками зрения крайнего оптимизма (критерий азартного игрока) и крайнего пессимизма (критерий максимина). Для этого вводят некий коэффициент – уровень пессимизма. Выбор уровня пессимизма – процесс субъективный. Чаще всего его выбирают равным либо 0,6 либо 0,5. После этого показатель эффективности стратегии Аi по критерию Гурвица находится по формуле:

Z =

Для случая оптимизации потерь критерий будет таким:

Z = #

Таким образом, исходную матрицу необходимо дополнить справа еще тремя столбцами. В первый нужно внести значения наименьших элементов всех строк, умноженных на уровень пессимизма = 0,6. Во второй нужно внести значения наибольших элементов всех строк, умноженных на уровень оптимизма 1 – = 1 – 0,6 = 0,4 . В третий добавленный столбец внесем сумму значений первых двух добавленных столбцов:

Затем из элементов добавленного столбца нужно выбрать наибольший. Строка, в которой он стоит и будет оптимальной стратегией.

В нашем случае наибольший элемент в добавленном столбце 7,2 (в матрице он выделен). Таким образом, в нашем примере оптимальной стратегией будет А1, т.е. инвестор должен выбрать для вложения средств первый проект.

Ответ А1 .

  1. . Принятие решения в условиях противодействия

    1. 4.1 Матричные игры

Раздел "Теории принятия решений" в условиях противодействия называется теорией игр. А так как в основном условия задач в "Теории принятия решений" задаются в виде матриц, то рассматриваемые конфликтные ситуации называются матричными играми. В матричных играх состояниями В1, В2, …, Вn управляет не беспристрастная природа, а активный противник, преследующий сугубо свои цели.

ЛПР, управляющий своими стратегиями (ходами) А1, А2, …, Аn, и его противник, управляющий стратегиями (ходами) В1, В2, …, Вn в данной ситуации называются игроками.

Элементы матрицы аij , заданной в условии, называются выигрышами (платежами) игрока А. А вся матрица называется матрицей платежей.

Далее возможны два случая. Если в матричной игре задана одна платежная матрица, то естественно предположить, что выигрыши первого игрока будут являться проигрышами второго игрока. Такая антагонистическая ситуация называется матричной игрой с нулевой суммой. Цель игры для первого игрока (ЛПР) – побольше выиграть, а для второго игрока – поменьше проиграть. Иными словами, целью игры является определение оптимальной стратегии для каждого игрока – такой стратегии, при которой выигрыш первого игрока будет максимальным, а проигрыш второго игрока будет минимальным.

Однако, такая ситуация бывает не всегда. Зачастую в жизни ваш противник преследует сугубо свои цели, определенные своими выигрышами. В этом случае матричная игра задается двумя платежными матрицами. Или для краткости элементы одной платежной матрицы состоят из двух чисел: (аij, bij). Такая ситуация называется матричной игрой с ненулевой суммой. И для первого и для второго игроков цель игры – побольше выиграть.

Очевидно, что рассмотренная матричная игра предполагает, что каждый игрок делает только по одному ходу. Естественно, что многие конфликтные ситуации предполагают по нескольку ходов каждого игрока. Такие игры рассматриваются пошагово и решаются методами динамического программирования. На каждом отдельном шаге такая игра рассматривается как игра с одним ходом.

Матричные игры для двух игроков с нулевой и ненулевой суммой достаточно хорошо изучены и для них разработана теория оптимального поведения игроков.

Однако в жизненной практике в конфликтных ситуациях зачастую участвуют более чем две стороны. Чем больше игроков – тем больше проблем. Такие игры менее изучены и здесь есть просторное поле для новых фундаментальных научных исследований.

Несмотря на несколько легкомысленное звучание основных терминов, теория игр является строго научной дисциплиной с точными математическими выкладками.

На протяжении всего своего исторического пути развития человечество ежедневно сталкивается с конфликтными ситуациями: политическими, военными, экономическими, социальными и прочими, которые проявляются как в глобальных, так и в малых (вплоть до личных) формах. И если бы Человеку хватило бы ума в конфликтных ситуациях пользоваться не силой, не надеждой на "авось", а математикой, то жизнь наверняка была бы другой. Будем надеяться, что новое поколение, усвоив курс "Исследование операций" , изменит жизнь к лучшему!

Итак, рассмотрим игру, в которой ЛПР противостоит "думающий" противник.

Возможны такие случаи:

  1. Ходы игроками делаются одновременно.

  2. Первым ходит игрок 2 – противник, но игрок 1 – ЛПР, не имеет информации о ходе противника.

  3. Первым ходит игрок 2 – противник, но игрок 1 – ЛПР, знает о ходе противника.

  4. Первым ходит игрок 1, но игрок 2 не имеет информации о ходе противника.

  5. Первым ходит игрок 1, но игрок 2 знает о ходе противника.

Очевидно, что случаи 1), 2) и 4) идентичны – никто из игроков не знает о ходе противника ничего.

Рассмотрим случай 3). Так как ЛПР имеет полную информацию о ходе противника, то мы имеем ситуацию принятия решения в условиях полной определенности. Как уже отмечалось выше, такими задачами занимается математическое программирование.

Рассмотрим случай 5). Так как ЛПР ходит первым, то его противник наверняка выберет самую худшую для ЛПР стратегию. Поэтому в такой ситуации ЛПР необходимо принимать решение о своем ходе согласно принципу наибольшей осторожности, т.е. согласно принципу максимина. Это утверждение однозначно, легко математически доказывается и не должно подвергаться сомнению ни в каких жизненных ситуациях.

Итак, содержательны по своей сути только случаи 1), 2) и 4), которые сводятся к одному случаю. Это как мы видим, принятие решения в условиях неопределенности.

    1. 4.2 Матричные игры, разрешимые в чистых стратегиях

Рассмотрим парную конечную антагонистическую игру. Пусть игрок А располагает m личными стратегиями, которые обозначим А1, а2 ..., Аm. Пусть у игрока В имеется n личных стратегий, обозначим их В1, В2, ,.., Вn. Говорят, что игра имеет размерность m х n . В результате выбора игроками любой пары стратегий Аi и Вj (i = 1,2 …, m; j = 1,2, …, n).

Однозначно определяется исход игры, т.е. выигрыш аij игрока А (положительный или отрицательный) и проигрыш (-аij) игрока В . Предположим, что значения аij известны для любой пары стратегий (Аi Вj). Значения этих выигрышей заданы в платежной матрице

Строки этой таблицы соответствуют стратегиям игрока А , а столбцы – стратегиям игрока В .

С помощью хорошо нам знакомого принципа максимина найдем гарантированный наибольший выигрыш для игрока А:

Найденное число называется нижней ценой игры.

Стратегия, соответствующая максимину, называется максиминной стратегией – она будет оптимальной стратегией игрока А.

Посмотрим на эту ситуацию с точки зрения второго игрока: ему необходимо уменьшить свои потери. В таком случае критерию максимина превратится в минимаксный и гарантированный наименьший проигрыш для игрока В будет таким:

Найденное число в называется верхней ценой игры

Стратегия, соответствующая минимаксу, называется минимаксной стратегией – она будет оптимальной стратегией игрока В.

Причем, для нижней и верхней цены игры всегда справедливо неравенство:

Если нижняя и верхняя цены игры совпадают, то общее значение верхней и нижней цены игры = в = называется чистой ценой игры, или ценой игры. Элемент платежной матрицы, в котором достигается чистая цена игры, называется седловой точкой (по аналогии с поверхностью седла, которая искривляется вверх в одном направлении и вниз – в другом). Найденные оптимальные стратегии игроков А и В в данном случае называются чистыми стратегиями.

Матричная игра с платежной матрицей, имеющей седловую точку, называется игрой, разрешимой в чистых стратегиях. При этом очевидно, что решение игры обладает устойчивостью, т.е. если один из игроков придерживается своей оптимальной стратегии, то для другого не может быть выгодным отклоняться от своей оптимальной стратегии. Оба игрока находятся в "положении равновесия", из которого не выгодно выходить каждому.

Рассмотрим числовой пример.

Пусть имеем игру с платежной матрицей:

Проверим, имеет ли наша матричная игра седловую точку? Для этого используем принцип максимина.

Дополним исходную матрицу справа еще одним столбцом, а снизу – еще одной строкой. В них будем заносить значения минимальных элементов каждой строки и значения максимальных элементов каждого столбца соответственно:

Найдем нижнюю цену игры. Выигрыш игрока А:

= = 4он достигается в третьей строке.

Найдем верхнюю цену игры. Выигрыш игрока В:

в = = 4 он достигается во втором столбце.

Как видим, выигрыши игроков совпадают: = в = = 4 , значит у матрицы имеется седловая точка. А значит, у данной матричной игры имеется пара оптимальных чистых стратегий А3В2 . Цена игры = 4.

Но такое бывает далеко не всегда.

    1. 4.2 Матричные игры, разрешимые в смешанных стратегиях

      1. 4.2.1 Постановка задачи

Если платежная матрица не имеет седловой точки, то . А значит . Такая игра в чистых стратегиях не разрешима. Первый игрок в таком случае будет стремиться увеличить свой выигрыш, а второй – уменьшить свой проигрыш. Поиск такого решения приводит к применению сложной стратегии, состоящей в случайном применении двух и более чистых стратегий с определенными вероятностями:

PA = (p1, p2, …, pm) где pi – это вероятности применения чистых стратегий игроком А;

QB = (q1, q2, …, qn) где qj – это вероятности применения чистых стратегий игроком B;

при этом и .

Такие наборы вероятностей применения чистых стратегий игроками А и В называются смешанными стратегиями.

Заметим, что чистые стратегии – это частный случай смешанных стратегий. Например, чистая стратегия первого игрока – это смешанная стратегия, у которой все вероятности pi = 0 , кроме соответствующего номера k чистой стратегии: pk = 1 .

Основная теорема теории игр (Теорема фон-Неймана): любая конечная игра двух лиц с нулевой суммой разрешима в смешанных стратегиях.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
428
Средний доход
с одного платного файла
Обучение Подробнее