49309 (Управление сложными системами), страница 4

2016-07-30СтудИзба

Описание файла

Документ из архива "Управление сложными системами", который расположен в категории "". Всё это находится в предмете "информатика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "книги и методические указания", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "49309"

Текст 4 страницы из документа "49309"

ММ: .

Передаточная функция:

АФХ: .

ω

0

+∞

A(ω)

1

φ(ω)

π

+

АФХ этого звена является зеркальным отражением относительно мнимой оси АФХ минимально-фазового дифференцирующего звена первого порядка.

ЛЧХ: а) б)

6.11 Неминимально-фазовое дифференцирующее звено второго порядка

ММ:

Передаточная функция:

АФХ: .

ω

0

+∞

A(ω)

1

φ(ω)

0

π

АФХ этого звена является зеркальным отражением относительно вещественной оси АФХ минимально-фазового дифференцирующего звена первого порядка.

ЛЧХ: а)

б)

6.12 Звено чистого запаздывания

Свойства звена чистого запаздывания (ЗЧЗ):

Примеры:

1) Рецептор зрительного анализатора человека.

2) Любой канал связи.

3) Давление в трубопроводе.

ММ:

Передаточная функция:

АФХ:

ЛЧХ: а) б)

6.13 Звено чистого запаздывания

ММ:

Передаточная функция:

АФХ:

Раздел 7. Анализ устойчивости систем

В замкнутой динамической системе выходной сигнал не может появиться на входе мгновенно для противодействия входному сигналу. Это обусловлено тем, что энергия в подсистемах не может изменяться мгновенно, то есть существует запаздывание. Энергия колеблется относительно некоторого уровня и при определённых условиях система из источника подавления колебаний становится их генератором, то есть оказывается неустойчивой.

7.1 Понятие устойчивости по А. М. Ляпунову

(1892 год.)

Рассмотрим непрерывную многомерную систему в свободном движении, математическая модель которой следующая:

… (1)

Здесь Xi — любая линейная или нелинейная функция, а xi — обобщённая фазовая координата или переменная состояния системы n-мерного порядка (фазовые координаты).

В n-мерном фазовом пространстве (пространстве состояний) в фиксированный момент времени xi определяют состояние системы в виде точки с соответствующими координатами, например, при n=3:

M(x) — изображающая точка.

В переходном режиме изображающая точка описывает некоторую траекторию, которую назовём фазовой.

Проекции вектора скорости изображающей точки на оси — левые части уравнений (1), следовательно, о поведении системы в переходном режиме можно судить по правым частям уравнений (1).

Так, например, если n=2, имеем фазовую плоскость:

Исключая из этой системы время t, получим:

Интегрируя это уравнение, получим семейство фазовых траекторий (фазовый портрет) системы, каждая из которых соответствует определённому значению постоянной интегрирования.

Фазовый портрет полностью определяет основные свойства свободного движения системы.

Пусть в начальный момент времени изображающая точка M(xi0) при t=0 начала двигаться по некоторой невозмущённой фазовой траектории и пусть в тот же самый начальный момент времени на неё подействовал мгновенный кратковременный импульс, который сместил эту точку в положение . В результате точка M будет двигаться по возмущённой траектории .

Таким образом, движение системы устойчиво, если при сдвиге начального положения изображающей точки на величину не более малой положительной величины (*) возмущённое движение в последующие моменты времени будет отличаться от невозмущённого на величину не более сколь угодно малой величины (**).

В противном случае движение системы не устойчиво.

Если при этом выполняется условие (***), то движение асимптотически устойчиво. Следовательно, по Ляпунову оценивается устойчивость системы при достаточно малых начальных отклонениях. Линейная стационарная система, устойчивая “в малом”, будет устойчива и “в большом”.

7.2 Необходимые и достаточные условия устойчивости линейных стационарных систем

Пусть известна математическая модель системы, описывающая свободное движение системы в виде однородного дифференциального уравнения:

(1)

или разностного уравнения

(1΄)

и пусть x — это отклонение интересующей нас переменной от её значения в равновесном режиме. Тогда система будет устойчива, если выполняется условие (2)

или (2΄)

При каких условиях выполняется равенство (2)?

Уравнениям (1) и (1΄) соответствуют характеристические уравнения:

… (3)

… (3΄)

Если корни si уравнения (3) различны, то решение уравнения (1) может быть записано следующим образом .

В общем случае корни являются комплексными sii+jβi.

1) Если αk>0 A→∞ система не устойчива.

2) Если αk<0 A→0 система устойчива.

3) Если αk=0 A=ck=const система нейтрально устойчива.

Следовательно, для устойчивости линейной непрерывной стационарной системы необходимо и достаточно, чтобы все корни характеристического уравнения имели отрицательные вещественные части, то есть располагались в левой полуплоскости плоскости S.

Можно показать, что для устойчивости дискретной линейной стационарной системы необходимо и достаточно, чтобы все корни характеристического уравнения (3΄) zi были: |zi|<1 … (!!)

Лекция №8. 05.03.2003

4.1.3.1.1 Решение уравнения состояния

(5)

Пусть при t=t0 X(t0)=X0 (начальные условия). Из теории дифференциальных уравнений известно, что решение уравнения (5) при известных начальных условиях может быть получено в следующем виде:

(6)

где M(t) — фундаментальная или переходная матрица.

Решение уравнения (5) можно записать и в виде ряда Тейлора:

(7)

Производные в формуле (7) можно определить из уравнения (5):

т.е. (8)

Здесь (9)

еAt — МАТРИЦИАНТ.

Можно сказать, что решение неоднородного уравнения состояния имеет вид:

(10)

4.1.3.2 Дискретные математические модели многомерной системы

Рассмотрим многомерный импульсный фильтр:

1 — непрерывная часть системы;

4 — формирователи.

В случае экстраполятора нулевого порядка (Э0П) управляющие сигналы yp(t), действующие на непрерывную часть системы, будут кусочно-постоянными, т.е. yp(t)= yp[iT], iTt ≤ (i+1)T в скалярной форме или Y(t)=Y[iT] при iTt ≤ (i+1)T в векторной.

Рассмотрим уравнение (10) при следующих условиях:

1) t0=iT — начальные условия.

2) (iT, t) — интервал интегрирования.

В частности, при t=(i+1)T:

Таким образом:

(11)

Это уравнение состояния многомерной дискретной системы.

Здесь:

(12)

еAT — МАТРИЦИАНТ.

(13) (14)

В развёрнутой форме уравнение состояния примет вид:

 (III)

Пример 4.

Определить уравнение состояния многомерной импульсной системы с Э0П. Математическая модель непрерывной части известна:

1. Составим уравнение состояния непрерывной части системы:

, , тогда

2.

3.

4.

5.

6. Запишем уравнение состояния:

(III΄)

Лекция №9. 11.03.2003

Раздел 5. Основные характеристики систем

5.1. Передаточная функция

5.1.1 Непрерывные системы

Из выражения (II*) при f(t)=0 следует

(1)

Передаточная функция W(s) — отношение преобразования Лапласа величины на выходе системы X(s) к величине на входе системы Y(s) при нулевых начальных условиях.

Основные свойства передаточной функции:

1) Это дробно-рациональная функция.

2) Коэффициенты полиномов числителя и знаменателя — вещественные числа.

3) Невещественные нули и полюса передаточной функции являются комплексно сопряжёнными.

4) Все полюса передаточной функции устойчивой системы располагаются в левой полуплоскости плоскости S.

Различают несколько видов ПФ:

Рассмотрим непрерывную линейную стационарную систему, математическая модель которой следующая:

Применяя к этой системе преобразование Лапласа, при нулевых начальных условиях получим:

ПФ системы в разомкнутом состоянии.

Отключим от элемента сравнения главную обратную единичную связь уравнение вырождается, а уравнение принимает вид:

Подставляя в уравнение , получим:

а) — ПФ разомкнутой системы по управляющему воздействию.

б) — ПФ разомкнутой системы по возмущающему воздействию.

ПФ системы в замкнутом состоянии.

Подключим главную обратную единичную связь к элементу сравнения. Рассмотрим систему уравнений . Исключая из этой системы переменные E(s) и R(s), получим:

а) возмущение отсутствует f(t)=0:

— ПФ замкнутой системы по управляющему воздействию.

б) управление отсутствует y(t)=0:

— ПФ замкнутой системы по возмущающему воздействию.

Исключая из системы уравнений R(s) и X(s), получим:

Если f(t)=0, то — ПФ по ошибке относительно управляющего воздействия.

Если не единственная обратная связь, то смотри методические указания.

ПФ астатических систем.

Известно, что

(*)

Условие (*) выполняется, когда , где Y0(0)=const≠0.

Пример.

система будет астатичной, если её ПФ имеет простой/однократный нуль при s=0

т.к. и если , а

Если W(s) (ПФ разомкнутой системы) имеет хотя бы один простой полюс при s=0.

5.2 Переходная функция

Переходная функция h(t) — реакция системы на единичное ступенчатое воздействие.

Эта функция определяет качество регулирования системы.

Основными оценками качества регулирования являются следующие параметры:

Пример на странице 29 методических указаний.

h(t) можно определить следующим образом:

1) по ММ системы в области вещественной переменной t (численно /стр. 28/).

2) по ММ в области комплексной переменной

Рисунок

, т.к.

5.3 Импульсная переходная функция (функция веса)

Так же, как и h(t), ИПФ k(t) является основной характеристикой системы во временной области. Это реакция системы на δ-функцию.

, !!!

так как .

Лекция №10. 12.03.2003

Основные свойства импульсной переходной функции:

1) ИПФ и ПФ являются преобразованием Лапласа друг от друга. Задание одной из них достаточно для задания другой.

2) — условие устойчивости.

3) k(t)=0 для любого t<0 — условие физической реализуемости.

4) .

5) Если y(t) непрерывная и ограниченная функция и элементарное управляющее воздействие yi(t) вызывает реакцию , то с учётом суперпозиции:

— интеграл Дюамеля.

— определяет реакцию системы по элементарному воздействию (известной импульсной функции.)

5.4 Дискретная передаточная функция

5.4.1 Дискретная передаточная функция импульсного одномерного фильтра

Пусть известна импульсная переходная функция приведённой непрерывной части КП(t), то есть реакцию на единичную импульсную решетчатую функцию.

Определим реакцию импульсного фильтра на дискретную последовательность (решетчатую функцию):

U[mT], m=0, 1, …, i — на входе. x(t) — ?

Дискрета

Реакция

U[0T]

U[1T]

U[mT]

U[0T]КП(t)

U[T]КП(t-T)

U[mT]КП(t-mT)

элементарные реакции

Непрерывная часть сглаживает импульсы, но мы хотим выделить дискреты:

t=iT

Применим Z-преобразование:

, тогда с учётом теоремы свёртки получим: X(z)=WП(z)U(z); U(z)=Z{U[i]}.

— ДПФ импульсного фильтра.

По аналогии с непрерывными системами: (отношение Z-преобразования сигнала на выходе фильтра к Z-преобразованию входного сигнала при нулевых обратных условиях).

Так как , то на практике очень удобна следующая формальная запись: !!!

то есть ДПФ равна Z-преобразованию такой функции оригинала, преобразование Лапласа которой равно W(s).

Пример № 1:

5.4.2 Дискретная передаточная функция импульсной системы с экстраполятором нулевого порядка

Структура системы приведена на Рисунке № !.

Можно показать, что ДПФ такой системы в разомкнутом состоянии (когда убираем главную обратную связь) определяется по следующей формуле:

!!!!

W(s) — передаточная функция непрерывной части системы.

Пример № 2.

Определить ДПФ микропроцессорной (импульсной) системы (Рисунок № !), непрерывная часть которой следующая:

Решение:

1)

2) — раскладываем на простые дроби.

3)

5.4.3 Дискретная передаточная функция многомерной системы

Задачу определения ДПФ для многомерного случая удобно решать Методом Пространств Состояний:

Рассмотрим алгоритм решения этой задачи для простейшего одномерного случая:

(смотри связь между ПФ и дифференциальным уравнением)

Известно, что решение этого дифференциального уравнения первого порядка: x(t0)=x0

При U(t)=U[iT], iT t < (i+1)T интегрируя в пределах (iT, t):

.

t=(i+1)T

.

Применяя к этому выражению Z-преобразование с начальными нулевыми условиями, с учётом теоремы сдвига и свойств линейности:

ММ многомерной системы приведена выше (смотри систему уравнений (III)). Применяя к этой системе Z-преобразование с нулевыми начальными условиями, с учётом свойств линейности получим:

  (III*)

Эта ММ позволяет определить матричную дискретную передаточную функцию , элементы которой рассчитываются по следующим формулам:

(1)

Здесь (2)

Определитель можно получить из определителя (2) путём замены q-столбца следующим столбцом:

5.4.3.1 Пример № 3

По системе линейных разностных уравнений, полученных в примере (III′), определить дискретные передаточные функции от управления y к координатам x1 и x2.

Лекция №11. 18.03.2003

Решение:

1)

2)

3)

4)

5)

5.4.3.2 Численный расчёт дискретных передаточных функций многомерных систем

Если известно уравнение состояния то можно получить уравнение состояния многомерной импульсной системы . При этом матрицы G, , H определяются численно в виде рядов с использованием матриц А и В по приведённым выше формулам.

Реализация алгоритмов определения элементов требует операции раскрытия определителей (смотри Пример № 3). Эту задачу можно решить или классически (по известным методам), или численно. При высоком порядке системы более эффективны численные методы Фадеева, Крылова, Леверрье.

Рассмотрим метод Фадеева:

Во-первых, определитель системы det(z) (2) является характеристическим многочленом матрицы G, следовательно:

Необходимо найти коэффициенты этого полинома: .

Алгоритм расчёта коэффициентов по Фадееву:

1 этап:

1 шаг:

2 шаг:

3 шаг:

2 этап:

1 шаг:

2 шаг:

3 шаг:

Предпоследний этап:

1 шаг:

2 шаг:

3 шаг:

Последний этап:

1 шаг:

2 шаг:

3 шаг: (Контроль)

Пример № 4.

Рассмотрим систему второго порядка:

Поиск методом Фадеева:

1) , в котором неизвестны a1 и a0.

2) а) б)

в)

3) а)

б)

в) Контроль:

Во-вторых, отличен от определителя системы (III*)

Для расчёта коэффициента этого определителя можно использовать найденные значения коэффициентов ai.

Пусть (3)

(4)

Если подать на вход исходной системы (III*) какой-либо известный входной сигнал yp[iT], i = 0, 1, 2, … при нулевых остальных входных сигналах y1[iT]= y2[iT]=…= yp-1[iT]= yp+1[iT]=…=0 и при нулевых начальных условиях x1[0]=x2[0]=…=0, то путём непосредственных расчётов по системе (III*) (смотри задачу семинара №2) можно последовательно получить значения x[T], x[2T], …, x[iT].

Если подать тот же самых сигнал Yp на вход разностного уравнения (4) при нулевых начальных условиях (x[0]=x[–T]=…=0), то дискреты xq[iT] уравнения (4) совпадут с сигналами xq[iT] вектора X[iT], расcчитанного по уравнению (III*).

Тогда можно показать, что:

при входном сигнале (*)

(5)

Пример № 5.

Рассмотрим систему второго порядка, своего рода (III*) при n=2.

Для системы второго порядка определить дискретную передаточную функцию при нулевых начальных условиях.

Решение:

1) det(z) определён в примере № 4.

2) Составляем разностное уравнение p=2, n=2, q=1:

(4΄)

3) Рассчитываем переходный процесс по исходной системе (III*) при n=2:

i=0

(смотри условие (*)).

i=1

4) Определяем коэффициенты:

.

Лекция №12. 25.03.2003

5.5 Частотные характеристики

5.5.1 Непрерывные системы

Рассмотрим ММ стационарной непрерывной системы:

(1)

Пусть

На основе формулы Эйлера ( ):

, начальные условия нулевые.

При нулевых начальных условиях решение уравнения (1) можно получить в виде двух слагаемых x(t)=x1(t)+x2(t).

При этом с учётом принципа суперпозиции: x1(t) y1(t), x2(t) y2(t).

Найдём x1(t):

, где W — пока неизвестная и не зависящая от времени функция.

Подставляя в уравнение (1) x1, y1 и их соответствующие производные, получим:

… (2)

Комплексно-частотную характеристику системы можно получить передаточной функции путём замены переменной (смотри уравнение (1) раздела 5.1.1.).

Комментарий:

, … (3)

— вещественная частотная характеристика;

— мнимая частотная характеристика

Здесь:

Смотри методические указания, страница 18.

, … (4)

где — Амплитудно-частотная характеристика (АЧХ).

— Фазово-частотная характеристика (ФЧХ).

Пример смотри в методических указаниях, рисунки 11 и 12.

При изменении конец вектора описывает кривую, называемую АФХ — амплитудно-фазовая характеристика или Катографом Найквиста (Рисунок 21 методических указаний).

Физический смысл частотной характеристики: частотная характеристика — результат анализа вынужденного движения линейной стационарной системы при гармоническом воздействии.

Таким образом, .

Аналогично можно определить составляющую

воздействия y2(t).

То есть .

… (5)

Таким образом, если на входе рассматриваемой системы действует гармонический входной сигнал, то выходной сигнал будет также гармоническим (Формула (5)) и отличающимся от входного по амплитуде в раз, а по фазе на . Здесь — АЧХ, а — ФЧХ.

Замечание № 1:

Так как АФХ симметрична относительно вещественной оси для положительных и отрицательных значений , то обычно ограничивают диапазон изменения : .

Замечание № 2:

Иногда вместо обычной АФХ рассматривают нормированную АФХ такую, что , где , а — порядок астатизма системы, или обратную АФХ , или обратно нормированную АФХ .

Замечание № 3:

Очень часто вместо АФХ используют Логарифмическую Частотную Характеристику (ЛЧХ).

а) — ЛАЧХ.

б) — ЛФЧХ.

По оси абсцисс соответственно отмеряются либо , либо .

Примеры в методических указаниях — рисунки 12, 22, 25 а)

Примеры нормированных ЛЧХ — рисунки 23 и 25 б).

5.5.2 Дискретные системы

Анализ вынужденного движения импульсной системы на воздействие y[iT]=YcosiT0], значение которого в дискретные моменты времени образуют гармоническую решетчатую последовательность, определяет частотные характеристики системы:

Частотная характеристика —

АФХ дискретной системы может быть получена из ДПФ путём замены переменной , т.е.

Особенности АФХ:

— периодическая функция с периодом , поэтому её можно определить для любого интервала частот указанного периода ( )

ЛЧХ дискретных систем, в отличие от ЛЧХ непрерывных систем, не обладают асимптотическими свойствами.

Для восстановления указанного свойства используют билинейное W-преобразование , а также относительные ( ) и абсолютные ( ) псевдочастоты.

, т.е.

и

Таким образом, при имеем: !

И при имеем: !!

5.6 Основные правила преобразования структур линейных стационарных детерминированных систем

5.6.1 Непрерывные системы

Лекция №13. 26.03.2003

Правило исключения отрицательной обратной связи.

Узлы

а)

б)

Элементы суммирования

а)

б)

5.6.2 Дискретные системы

Для нелинейных или нестационарных систем будет по другому.

Раздел 6. Типовые элементарные структуры (звенья) системы управления

В структуре системы можно выделить элементарные подсистемы с определёнными, только им присущими, характеристиками.

Рассмотрим передаточную функцию непрерывной системы:

при этом возможны следующие случаи:

  1. Если (вещественный корень), то

2) Если существует два комплексно сопряжённых корня , таких, что и , тогда:

, где и

3) Если si=0, s–si=s.

Таким образом передаточную функцию системы можно представить в следующем виде:

следовательно, в структуре системы в общем случае можно выделить одиннадцать типовых элементарных структур (звеньев).

Звенья со знаком “+” называют минимально-фазовыми, а со знаком “–”, кроме , неминимально-фазовыми (их четыре). К неминимально-фазовым относят также звено чистого запаздывания, а также инвертирующее звено.

6.1 Усилительное звено

— Типовая Элементарная Структура.

ММ: x=ky.

Переходная функция:

Передаточная функция:

АФХ:

ЛЧХ: а)

б)

6.2 Апериодическое звено

ММ: в дальнейшем k=1.

Переходная функция:

Импульсная переходная функция:

Передаточная функция:

АФХ:

ω

0

A(ω)

1

0

φ(ω)

0

ЛЧХ: а)

б)

1) <1, T2ω2<<1. При этом

Lас=0 — низкочастотная асимптота (а — б).

2) >1, T2ω2>>1. При этом

Lас= –20lgTω — высокочастотная асимптота (в — г).

При изменении частот в 10 раз: ω1=1c–1; ω2=10c–1.

Lас1=–20lgT; Lас2=–20lgT–20.

.

6.3 Колебательное звено

ММ:

Переходная и импульсная переходная функции:

где — угловая частота колебаний.



Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5232
Авторов
на СтудИзбе
423
Средний доход
с одного платного файла
Обучение Подробнее