49236 (Техническая диагностика средств вычислительной техники), страница 3

2016-07-30СтудИзба

Описание файла

Документ из архива "Техническая диагностика средств вычислительной техники", который расположен в категории "". Всё это находится в предмете "информатика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "книги и методические указания", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "49236"

Текст 3 страницы из документа "49236"

Архитектура EISA (Extended ISA).

Это усовершенствованная шина АТ BUS. Группа основных производителей клона IBM PC (кроме фирмы IBM), с целью создания шины, конкурентоспособной шине МСА, разработала свою архитектуру шины – EISA. Эта шина, в отличие от MCA, совместима с AT BUS и, вместе с тем, тоже способна работать в высокоскоростных мультипроцессорных системах. Многократные тестирования, проведенные независимыми экспертами, в итоге не позволили выявить шину-лидера в споре МСА с EISA, но отечественные пользователи предпочитают последнюю. Впрочем, в современных моделях ПЭВМ используются, наравне с шиной EISA, и более новые стандарты шин, такие как PCI и USB. В большинстве системных плат современных РС все же оставляют 2-3 разъема с архитектурой EISA, для возможности подключения карт адаптеров старых моделей.

Контрольные вопросы.

1. Какие блоки обязательно входят в минимальный базовый комплект РС?

2. Как различаются РС по конструктивному исполнению?

3. Какие функциональные устройства должен содержать системный блок?

4. По каким архитектурным стандартам может быть организована ПЭВМ на базе CPU i386?

5. В чем достоинства и недостатки архитектуры ISA?

6. Почему архитектура МСА не получила широкого применения?

7. Какие преимущества имеет архитектура EISA?

1.4 Системная плата PC-i386DX

Для углубленной диагностики неисправностей микро-ЭВМ, к которым относятся все ПЭВМ, следует хорошо представлять себе не только структуру, но и логику построения и работы всех узлов и блоков, входящих в вычислительную систему на базе ПЭВМ.

Системная плата типичного компьютера содержит основные, несменные компоненты, не участвующие в аппаратном реконфигурировании РС:

- центральный микропроцессор (CPU),

- математический сопроцессор (FPU),

- оперативную память (DRAM) и ее буфер – кэш-память,

- контроллер DRAM,

- ROM BIOS,

- контроллер прямого доступа в память (DMA),

- СБИС системной поддержки CPU (Chip Set),

- системную шину (SB), представленную слотами расширения,

- контроллеры системной шины, буферы, шинные формирователи,

- систему локальной шины для связи CPU с FPU, DRAM, ROM,

- полупостоянную память небольшого объема (CMOS-память) для хранения текущей аппаратной конфигурации РС.

Вышеназванные контроллеры, буферы и формирователи на системной плате современных компьютеров выполняются в виде наборов из нескольких СБИС. Каждый такой набор носит название чип-сета (Chip Set). Чип-сеты разных производителей могут содержать разное количество СБИС и различное содержание каждой из СБИС, но общий состав всех контроллеров, буферов и формирователей остается практически неизменным, хотя и достаточно жестко привязанным к конкретному типу микропроцессора.

Рассматриваемая здесь для примера структурная схема РС386 реализована набором чипов VLSI (Very Large Scall Integration), составляющим чип-сет группы 8230 и включает в себя наборы модулей:

82С206 – интегрированный периферийный контроллер,

82С301 – системный контроллер,

82С302 – контроллер оперативной памяти,

82А303, 82А304 – буферы старшей и младшей частей адресов,

82В305 – контроллеры шины данных,

82А306 – буфер управляющих сигналов.

Встречается много разных наборов (чип-сетов), например группы, 81310, 8281 и т. д., имеющих другой состав, но в целом выполняющих те же самые процедуры обменов.

1.4.1 Структурная схема системной платы РС i386DX

Системная плата i386DX, структурная схема котоой приведена на рисунке 1.3, имеет следующие особенности:

1) применяется модернизированный ISA-интерфейс, включающий в себя дополнительный разъем для организации доступа в подсистему DRAM по 32-битовой шине данных;

2) управление обменом выполняется CPU i386 в режиме pipelined mode – конвейеризации адресов в 32-битовом формате;

3) аппаратно-программные средства обеспечивают доступ к DRAM в режиме Interleaving Organization – чередование банков памяти;

4) допускается страничный, по 2 Кбайт, режим (Page Mode) работы ОЗУ;

5) для повышения гибкости работы системы, в ряде контроллеров дополнительно программируются регистры конфигурации портов ввода-вывода;

6) ПЗУ базовой системы ввода-вывода ROM BIOS, объемом 64 Кбайт, включает в себя программу Extended CMOS SetUp или New SetUp, из которой и загружаются вышеуказанные порты регистров конфигурации, в результате чего, по желанию пользователя, могут быть изменены параметры теневой ОЗУ (Shadow RAM), отменена проверка паритета DRAM (Рarity Check DRAM), обеспечивается независимое программирование рабочей скорости CPU, DMA, системной шины, задержки в управлении памятью и устройствами ввода-вывода;

7) в составе клона IBM PC\AT, для периферийного оборудования может быть установлен менеджер режимов питания, позволяющий переводить модули обрамления в экономичный режим энергопотребления, если ВС находится в режиме простоя (Ti-Idle). Сам менеджер имеет автономную систему питания и организован на чипе i82347

┌─ ─ ─ ─ ─┐ Local Bus System Memory Bus IO Channel Bus
80387 D A MD MA SD SA
│ 80287 │ 32 │32│ ┌────────┐ 32 │32│ 16 │24│
WTL3167 \│ \│ ctrlABF │ \│ \│ \│ \│
│ ┌─────┴──┐ │ │ ─────>│ │──────│─>│ │ │
FPUCPU │────│─>││ 82A303 ││
└─ ─┤ │ │ │ │ 82A304 │<───┐ │ │ │ │
│ ││ │ └────────┘ │ │ │ │ │
│ 80386 │ │ │ ┌────────┐ │ │ │ │ │
└────┬───┘ │ │ ctrlDBF │ │ │ │ │ │
│ │ │ ─────>│ ││ │ RD[15/00] │ │
│ ││ 82A305 │┌───────┐ │ │
┌────┴───┐ │ │ │ │ │ │ │ │ │I/O BUS│ │ │
│ │ │ │ └────────┘ │ │ │ │ │ ││ │
SC │ │ │ ┌────────┐ │ │ │ │ │74S245 │ │ │
│ │ │ │ ctrlMC │ │ │ │ │ └───────┘ │ │
│ 82C301 │ │ │ <─────┤ │<──┐│ │ │ │ │ │
└───┬┬───┘ │ ├───────>│ 82A302 ││ │ ┌───────┐ │ │
││ │ │ │ │ ││ └──┤ ROM │<───│──┤
││ │ │ └───┬────┘ ││ │ BIOS │ │ │
\/ ┌───┴────┐ ││ └───────┘ │ │
CONTROLBFS │ ││ ┌───────┐ │ │
XD[07/00] └───┬────┘ ││ ┌─┤ AT ││
XA[01/00] │ ││ │ │Add On ││ │
│ ││ │ │Boards│ │ │
Peripheral ┌───┴────┐ ││ │ └─────┬─┘ │ │
BusDRAM │ ││ └───────┘ │ │
XD XA └────────┘ ││ │ │
│<──│───────────────────────────┘│ │ │
│ │<───────────────────────────┘ │ │
8 │ │ 8(24) ┌───────┐ │ │
\│ │/ │I/O BUS│ │ │
││74S245 ││ │
│ │ ┌────────┐ └───────┘
││ IPC
││ 82C206 │
│ │ └────────┘ ┌────────┐
││ KBDC
│ ││ 8042 │└────────┘

Рисунок 1.3. Структурная схема системной платы РС386.

На приведенной схеме использованы следующие обозначения:

CPU – центральный процессор,

FPU – математический сопроцессор,

SC System Control - системный контроллер,

ABF Addres Buffers – буферы адреса (303 – старшей, 304 – младшей) частей адреса,

DBF Data Buffer – буфер данных,

МС Memory Controller – контроллер ОЗУ,

BFS Buffers – буферы памяти (КЭШ),

DRAM – ОЗУ,

I/O Bus – приемопередатчики шин,

ROM BIOS – системное ПЗУ,

АТ – адаптеры и контроллеры расширения системной шины,

IPC – Integrated Peripheral Controller – интегральный контроллер периферии,

KBDC – Keyboard Controller – контроллер клавиатуры.

1.4.2 Архитектура шин чип-сета группы 8230

Системная плата IBM PC386 с набором чип-сета 8230, изображенная на рисунке 1.3, имеет следующую систему шин:

1. 32-битовая локальная шина адреса Lokal Bus А[31/02] связывает:

- CPU 80386,

- FPU 80387 или WEITEK WTL3167, если имеется его розетка,

- буферы адреса 82A303 и 82A304,

- контроллер DRAM 82A302;

2. 24-битовая системная шина адреса IO Channel Bus SA[23/00] формируется буферами адреса 82A303, 82A304 и используется в подсистеме ввода-вывода для карт расширения УВВ;

3. 24-битовая шина расширения адреса Peripherial Bus XA[23/00] формируется буферами адреса 82A303, 82A304 и используется контроллером IPS 82C206 также для доступа к ROM BIOS, а часть адреса XA[01/00] – и для доступа к портам модулей системной поддержки;

4. 10-битовая шина адреса DRAM MA[09/00] – мультиплексируемая шина для передачи адреса из контроллера MC 82A302 в DRAM для доступа к ячейкам DRAM;

5. 32-битовая локальная шина данных Local Bus D[31/00] – двунаправленная шина с Z-состоянием, подключена к нагрузочным сопротивлениям 32х10 КОм и коммутирована к сопроцессору и буферам данных DBF 82A305.

Локальные шины A[31/02], D[31/00] и XA[01/00] могут быть организованы в подсистему расширения локальной шины VESA, для использования в системе скоростных 32-битовых УВВ, минуя арбитраж.

6. 16-битовая системная шина данных IO Channel Bus SD[15/00] формируется на буферах данных DBF 82A305 и двунаправленных шинных формирователях IO BUS типа 74S245.

7. Для доступа к ROM BIOS используется локальная шина RD[15/00], преобразование которой в шину IO Cannel Bus SD[15/00] производит второй шинный формирователь IO BUS 74S245. Системные шины доступны, если управляющая ПЛИС PAL16L8 (системный контроллер SC 82C301) декодировала одну из комбинаций управляющих сигналов, предназначенных для доступа к картам УВВ.

8. 32-битовая шина данных DRAM System Memory Bus MD[31/00] связывает DRAM и буфер данных DBF 82A305. Полная ширина линий MD[31/00] выведена и на специальный разъем расширения DRAM.

9. 8-битовая шина расширения данных Peripherial Bus XD[07/00] предназначена для доступа к информации периферийных портов обрамления УВВ, расположенных в контроллерах SC 82A301, MC 82A302, IPC 82C206. Для организации доступа к 8-битовым устройствам через 16-битовую магистраль IO Cannel Bus SD[15/00], используются два цикла обмена, в течение которых на Peripherial Bus XD[07/00], через буфер I/O BUS 74S245, посылается от/к УВВ по одному байту.

В слотах УВВ имеются разъемы для набора сигналов группы интерфейсов XT/AT-BUS.

Контрольные вопросы.

1. Что связывает локальная шина микропроцессора?

2. Какую разрядность имеют локальная и системная шины данных?

3. Какую разрядность имеет локальная адресная шина микропроцессора?

4. К какому объему адресного пространства может иметь прямой доступ CPU i386?

5. Сколько байт может быть передано одновременно по системной шине ISA?

6. Сколько байт информации может быть передано одновременно в/из DRAM?

7. В чем особенность адресной шины DRAM?

8. Сколько портов ввода-вывода можно адресовать через системную шину адреса?

1.4.3 Микропроцессор

1.4.3.1) Архитектура и типы микропроцессоров

Архитектура, т. е. логическая организация микропроцессора, однозначно определяет свойства, особенности и возможности построения вычислительной системы на базе данного микропроцессора.

Современные микропроцессоры, при всем разнообразии их типов, моделей и производителей, имеют одну из трех типов архитектуры: CISC, RISC и MISC (это относится к микропроцессорам универсального, а не специального применения).

Архитектура CISC (Complex Instruction Set Computer) – командо-комплексная система управления компьютером. Отличается повышенной гибкостью и расширенными возможностями РС, выполненного на микропроцессоре, и характеризуется:

1) большим числом различных по длине и формату команд;

2) использованием различных систем адресации;

3) сложной кодировкой команд.

Архитектура RISC (Reduced Instrucktion Set Computer) – командо-однородная система управления компьютером, имеет свои особенности:

1) использует систему команд упрощенного типа: все команды имеют одинаковый формат с простой кодировкой, обращение к памяти осуществляется командами загрузки (данных из ОЗУ в регистр микропроцессора) и записи (данных из регистра микропроцессора в память), остальные используемые команды – формата регистр-регистр;

2) при высоком быстродействии допускается более низкая тактовая частота и меньшая степень интеграции СБИС VLSI;

3) команда меньше нагружает ОЗУ;

4) отладка программ на RISC более сложна, чем на CISC;

5) с архитектурой CISC программно несовместима.

Архитектура MISC (Multipurpose Instruction Set Computer) – многоцелевая командная система управления компьютером, сочетает в себе преимущества CISC и RISC. Элементная база состоит из отдельных частей (могут быть объединены в одном корпусе): основная часть (HOST – ведущая), архитектуры RISC CPU, а расширяемая часть – с подключением ПЗУ (ROM) микропрограммного управления. При этом вычислительная система приобретает свойства CISC: – основные команды работают на HOST, а команды расширения образуют адрес микропрограммы для своего выполнения. HOST выполняет команды за один такт, а расширение эквивалентно CPU со сложным набором команд (CISC). Наличие ПЗУ устраняет недостаток RISC, связанный с тем, что при компиляции с языка высокого уровня код операции (микропрограмма) уже дешифрирована и открыта для программиста.

Типы микропроцессоров.

Как известно, микропроцессоры бывают трех типов:

- однокристальные микропроцессоры,

- однокристальные микро-ЭВМ (All-In-Once – все в одном),

- секционные микропроцессоры (bit-slise - частичное расслоение).

1) Однокристальные микропроцессоры характерны тем, что:

- система команд фиксирована;

- содержат основные элементы кристалла: АЛУ, дешифратор команд, узел микропрограммного управления, узел управления обменом;

- не позволяют наращивать разрядность обрабатываемых слов каскадированием;

- шины данных, адреса, управления – мультиплексируемы.

2) Однокристальные микро-ЭВМ (ОМЭВМ) отличаются тем, что:

- кроме микропроцессора, кристалл включает в себя обрамление: ГТИ, контроллер прерываний, порты, таймер, ОЗУ, буфер команд;

- их применение очень просто (например, контроллер KBD в РС):

- вследствие низкой тактовой частоты, производительность ОМЭВМ невелика, но они и не предназначаются для высокоскоростных операций.

3) Секционные микропроцессоры характерны тем, что:

- допускают наращивание разрядности объединением одноименных линий нескольких чипов одинакового назначения;

- дезинтегрированы на отдельные компоненты АЛУ и ИМС обрамления;

- позволяют наращивать разрядность шин данных, адреса, АЛУ и объем подключаемой оперативной памяти:

- могут работать в разных системах команд, в соответствии с прошивкой микропрограмм.

Персональные компьютеры, в подавляющем большинстве выполняются на однокристальных микропроцессорах. Одни их первых, разработанные фирмой IBM, выполнялись на микропроцессорах i8088, позже – на 8086. Первый АТ-компьютер был выполнен с использованием микропроцессора i80286, после разработки фирмой Intel микропроцессоров i80386 и i80486, выпускались компьютеры типа РС-386 двух модификаций, позже PC-486 в трех модификациях. Дальнейшее развитие персональных компьютеров стало возможным после разработки и выпуска нового семейства микропроцессоров типа Pentium. Сравнительные характеристики микропроцессоров семейства 80х86 и Pentium приведены в таблице 1.1.

Таблица 1.1. Сравнительные характеристики однокристальных CPU семейства 80х86.

Тип микропроцессора

Количество выводов

Fтакт МГц

Разрядность адр/дн

Быстродействие mips

Скорость обмена МВ/сек

Транзисторов
в одном кристалле

103

8086

40

10

20/16

0,33

1,4

29

8088

40

10

20/8

0,33

0,7

29

80286

68

25

24/16

1,2

8,0

134

80386DX

132

40

32/32

6,0

66,0

275

80386SX

100

33

24/16

4,5

30,0

275

80486DX

168

50

32/32

20,0

106

1200

80486SX

168

33

32/32

16,5

-

1185

80486DX2

168

50/66

32/32

54

-

1300

Pentium

273 и более

>100

32/64

>112

>528

3100 и более

Контрольные вопросы.

1. В чем состоят особенности архитектуры CISC микропроцессора?

2. В чем достоинства и недостатки архитектуры RISC?

3. Какая архитектура микропроцессора свободна от недостатков CISC и RISC?

4. Как работает система с архитектурой MISC?

5. В чем особенности однокристальных микропроцессоров?

6. Что такое однокристальная микро-ЭВМ?

6. В чем достоинства секционных микропроцессоров?

8. Какую разрядность адреса/данных имеют микропроцессоры i386, i486?

9 В чем основное отличие микропроцессоров типа "Pentium"?

1.4.3.2). Структурная схема и функциональный набор сигналов управления CPU i386.

Структурная схема микропроцессора i386 приведена на рисунке 1.4.

сигналы сигналы
адресов и данных: управления шиной:

/BE[3/0] A[31/02] D[31/00] W/R#, D/C#, M/IO#,/LOCK
^ /\ /\ /ADS,/NA,/BS16,/READY
│ ││ ││ ^
│ ││ ││ │ ┌─────────────┐
┌──┴────────┴┴───────┴┴────────────────┴──┐ │ P U
│ │──>├─────────────┤
B I U │ │ очередь │
│ │ │ команд 16б │
└──────────────────────────┬──────────────┘ └──────┬──────┘
│ ┌──────┴──────┐
┌ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ │ ─ ─ ─ ─┐ │ I D U
┌────────────────────┐ │ ├─────────────┤
│ │ ┌──────────────┐│ ││ очередь МкК ├──┐
PAG │КЭШ стр.дескр.││<───┤ │ 31x100 бит │ │
│ │ └──────────────┘│ │ │ └─────────────┘ │
└───────────┬────────┘ │ ┌──────────────┐ │
│ │ ││ E U │ │
┌────┴─────────────┴───┐ ├──────────────┤ │
│ │ ┌────────────────┐│ │ │┌────────────┐│ │
MMUSU │ КЭШ сегм. дескр.│ ││файл 32р Рг ││ │
│ │ └────────────────┘│ │ │└────────────┘│ │
└──────────────────┬───┘ │┌────────────┐│ │
└ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ │ ─ ─ ─ ─┘ ││ А Л У 32р ││ │
┌──────────────┐ │ │└────────────┘│ │
│ устройство ││┌────────────┐│ │
│ защиты памяти│ ││сдвигат. 64р││ │
└──────────────┘ │└────────────┘│ │
микрооперации └──────────────┘ │
^ ^ ^ ^ ^ ^ │
┌────────────┴──┴──┴──┴──┴──┴────────────┐ │
│ управление микропроцессором │<───────────────┘
└──────────────────────────────────────┬─┘
^ ^ ^ ^ ^ ^ ^ │
│ │ │ │ │ │ │ │
PE REQ │ /ERROR │ NMI │ │ v
/BUSY /RESET INTR HOLD HLDA
└─────────────────────────────┘ └─────────┘

сигналы управления сигналы
микропроцессором арбитража

Рисунок 1.4. Структурная схема микропроцессора i386.

*) Термин ДЕСКРИПТОР в блоке MMU означает ключевое слово, описатель адреса страницы или сегмента и содержит физический адрес – эквивалент логического (математического) адреса в команде.

Описание функций блоков микропроцессора.

1. BIU (Bus Interface Unit) – устройство сопряжения с шиной. Системная шина осуществляет обмен информацией между CPU и подсистемами ВС.

2. PU (Prefetch Unit) – устройство предварительной выборки команд, представлено узлом управления конвейером команд и 16-битовым стеком команд дисциплины FIFO (First Input – First Output: первым пришел – первым вышел).

3. IDU (Instruction Decode Unit) – устройство декодирования команд, состоит из:

- декодера команд, осуществляющего дешифрацию полей команд первой ступени (определение типа и формата команды) и

- стековой памяти из 31-го 100-битовых полей, дисциплины FIFO, определяющих собственно набор микроопераций выполняемых команд. Стеки PU и IDU программно недоступны.

4. EU (Execution Unit) – устройство обработки данных, предназначено для хранения и обработки данных, выполнения команд и формирования кодов состояний CPU. EU включает в себя группу (файл)
32-битовых регистров:

1) EAX – аккумулятор;

2) EBX – адресный регистр базы данных;

3) ECX – счетчик операций цикла;

4) EDX – 64-Кбайтный адрес порта ПУ, либо адрес хранения старшей половины операнда в командах умножения и деления;

5) AX, BX, CX, DX – регистры хранения адресов 16-битовых операндов;

6) AL, AH, BL, BH, CL, CH, DL, DH – регистры хранения адресов 8-битовых операндов;

7) ESP и EBP – группа 32-битовых регистров указателей стеков для работы со стековыми сегментами;

8) ESI и EDI – регистры индексов, для хранения смещения адреса относительно базы при чтении или записи в память;

9) SP, BP, SI, DI – регистры для хранения 16-битовой информации,

10) EFLAGS – 32-битовый регистр флагов, включающий в себя:

- 6 статусных флагов (устанавливаются по результатам выполнения соответствующих операций);

- 2 управляющих флага, разрешающих включение режима VM86 и игнорирования (блокировки) ошибок при отладке программы по шагам;

- 2 системных флага, используемых в режиме РМ,

11) EIP (Instrucktion Pointer) – 32-битовый регистр счетчика команд (IP – 16-битовая секция счетчика команд). Счетчик команд программно недоступен.

12) CR0 СR3 – три 32-разрядных регистра управления, которые, совместно с системными регистрами, сохраняют информацию о состоянии CPU во время выполнении задачи. СR1 не используется.

Механизм отладки программ в микропроцессоре i386 позволяет:

1) введение в программу точек разрыва;

2) пошаговый (покомандный) режим выполнения программы;

3) программирование четырех адресных контрольных точек останова (DR0 – DR3). В реализации режима останова участвуют также регистры состояний DR6 (статусный) и DR7 (управляющий) из регистра EFLAGS. Оба регистра – TR6 и TR7 используются также для самодиагностики CPU. Режим самодиагностики запускается по заднему фронту сигнала RESET при условии, что сигнал /BUSY = L (Low – нижний уровень).

5. SU (Segmentation Unit) – блок сегментации, осуществляет первую ступень преобразования адресов, и состоит из 16-битовых регистров для хранения базовых текущих адресов, или сегментов в RM, либо селекторов в РМ и содержит:

1) CS (Code Segment) – селектор или сегмент кода;

2) SS (Stack Segment) – начало стекового сегмента;

3) DS, ES, FS, GS (Data Segments) – регистры сегментов данных.

Для организации режима виртуальной памяти в CPU i386 имеется механизм, включающий системные регистры:

1) GDTR (Global Descriptor Table Register) – регистр глобальной дескрипторной таблицы,

2) LDTR (Local Descriptor Table Register) – регистр локальной дескрипторной таблицы,

3) IDTR (Interrupt Descriptor Table Register) – регистр таблицы дескрипторов прерываний,

4) TR (Task Register) – регистр селектора сегмента состояния задачи (TSS).

6. PAG (Paging Unit) – блок страничной организации памяти. Это вторая ступень (первая – SU) для доступа к страничным ячейкам при виртуальном преобразовании адреса. SU и PAG входят как независимые узлы в MMU (Мemory Managment Unit).

ПРИМЕЧАНИЯ по тексту:

1) полярность активности логического сигнала может быть прямой (положительной) или инверсной (отрицательной).

ПРЯМЫЕ активные сигналы в таблицах и на схемах обычно не имеют особых отметок или, в исключительных случаях, имеют индекс high перед именем сигнала.

ИНВЕРСНЫЕ активные сигналы имеют равносильные обозначения:

- минус перед именем сигнала,

- знак "/" (слэж) перед именем сигнала (например, /ERROR),

- надчеркивание,

- знак # после имени (например, BUSY#), или

- индекс L (Low) после имени;

2) для принятой системы счисления за цифровым обозначением следует буквенный указатель:

- h (hex) - шестнадцатеричная,

- d (decimal) - десятичная, или

- b (binare) - двоичная система счисления;

3) размещение байтов в регистрах различно: обычно информация о составе байтов, заключенных в ячейки памяти, разделяется двоеточием, а при акцентировании конкретного бита, входящего в состав регистров или шин, принято обозначение бита (разряда) – его номером в квадратных скобках (например, EFLAGS[17]).

Назначение линий и сигналы интерфейса CPU.

D[31/00] (Data) – двунаправленная шина данных с тремя состояниями. Сигналы шины синхронные.

BS16# (Bus Size 16) – вход, связывающий CPU с 16-битовой шиной (режим i286). Если операнд – двойное слово, то BIU переключается на трансляцию в линию D[15/00] двух слов за два цикла обмена. Сигнал синхронный.

ВЕ0# - ВЕ3# – выходные стробы данных, линии с тремя состояниями. Сигналы показывают, какие байты 32-разрядной шины используются в текущей передаче. Вырабатываются при внутренней дешифрации двух младших разрядов адреса А[01/00] (см. Таблицу 1,2. Коды передачи байтов по системной шине).

А31-А0 – выходные адресные линии с Z-состоянием, обеспечивающие физическую адресацию памяти или УВВ.

W/R# (Write/Read) выходные линии с Z-состоянием, определяющие

D/C# (Data/Control) тип цикла шины. Сигналы действительны только

M/IO# (Memory/Input-Output) при активном уровне /ADS=L.

ADS# (Address Strobe) – выход строба адреса. Линия с Z-состоянием, по которой поступает сигнал к ВУ, о том, что начался цикл шины, определяемый сигналами управления W/R#, M/IO#, D/C#, /BE0- /BE3 и адресными линиями A[31/02] и адрес на них достоверен.

RESET (сброс) – асинхронный вход, останавливающий выполнение любой операции в CPU и переводящий его в состояние сброса. Сигнал определяется CPU по уровню и имеет наивысший приоритет. Это состояние реализуется на 15 и более периодов CLK2, но за 78 и более периодов CLK2 до запуска самодиагностики. На время действия RESET сигналы на входах CPU игнорируются, а выходы переводятся в пассивное состояние: /ADS=H, D[31/00]=Z, A[31/02]=H, /BE0-/BE3=L, W/R#=H, M/IO#=L, /LOCK=H, HLDA=L.

READY (готов) – синхронный сигнал, указывающий, что текущий ЦИКЛ ШИНЫ завершен, байты, определяемые сигналами /ВЕ0-/ВЕ3, /BS16, приняты или переданы. В первом такте цикла сигнал игнорируется, в остальных – анализируется, пока не станет активным. Внешнее оборудование, не способное закончить обмен за 2 такта, продлевает цикл, удерживая CPU в состоянии Time Out.

/NA (Next Addres) – синхронный сигнал для запроса следующего адреса, сообщает CPU, что система готова принять от него новые значения адресов и сигналов управления циклом обмена, даже если завершение текущего цикла шины не подтверждено сигналом /READY.

CLKвнутрипроцессорная частота CPU i386. Она вдвое ниже подводимой к входу CLK CPU от генератора тактовых импульсов. Для каждого периода CLK2 есть две фазы – Ф1 и Ф2, внутренней синхронизации микроопераций в CPU, но они могут быть синхронизированы с задним фронтом RESET. Различаются такты Ts и Tc, составляющие цикл обмена.

/LOCK – выходная шина с Z-состоянием, определяет тип цикла шины с блокировкой. Активизируется установкой /ADS=L в начале цикла шины с конвейеризацией адресов, или в циклах INTA. Применяется в мультипроцессорных системах и сигнализирует о том, что CPU выполняет операцию с несколькими циклами шины, которая не должна прерываться. Сигнал вырабатывается автоматически, при выполнении префикса /LOCK в циклах INTA и при смене страничных таблиц.

HOLD (Bus Hold Request) – запрос захвата шины. Синхронный входной сигнал, устанавливаемый другим CPU, или интеллектуальным УВВ для работы с шиной. Анализируется фронтом CLK2 и, пока HOLD активен, CPU следит за его уровнем, устанавливая в конце цикла обмена ответный сигнал HLDA.

HLDA (Bus Hold Asknowlege) – синхронный выход подтверждения передачи управления шиной другому, активному CPU или УВВ. В ответ на запрос HOLD, CPU переходит в состояние подтверждения захвата. На входе NMI возможно появление только одного запроса, запоминающегося в CPU для обработки его после снятия сигнала HOLD.

INTR (Interrupt прерывание) – асинхронный вход, инициирующий последовательность прерывания в CPU, аналогичен для любого i80x86 CPU.

NMI (Non Maskable Interrupt) – немаскируемое прерывание, сигнализирует CPU о появлении критической ошибки в ВС, не позволяющей правильно продолжить операцию (например, – ошибка адресов или данных в ОЗУ). Текущая программа прерывается и ситуация обрабатывается специальной программой для принятия решения (перезапрос данных, повторное выполнение операции, или сигнализация о неработоспособности ВС).

PE REQ (Co-processor Request) – запрос прерывания от FPU. Асинхронный вход, указывающий, что FPU нужен обмен с памятью (сам FPU обменом не управляет). CPU отвечает сигналом синхронизации, после чего FPU выполняет циклы обмена между локальной шиной и портами регистров данных FPU.

/BUSY (занят) – асинхронный вход, анализируемый по уровню командой WAIT, автоматически выдаваемой CPU, при обнаружении активного входа /BUSY=L (признак наличия ошибки, особой ситуации, или выполнения FPU очередной операции). На время активизации сигнала /BUSY, CPU выполняет такты ожидания. Если во время среза RESET сигнал /BUSY=L, то CPU выполняет процедуру самодиагностики.

ERROR (ошибка), – асинхронный вход, анализируемый по уровню. Указывает, что при выполнении команды в FPU сформирован незамаскированный в регистре состояния FPU код ошибки. CPU вырабатывает прерывание типа 10h, но чаще – аппаратное прерывание типа 75h по линии IRQ13.

Какие именно байты (A, B, C или D), из четырех возможных, машинного слова будет передаваться по системной шине ISA за один цикл обмена, определяются кодами управляющих сигналов ВЕ3# - BE0#. Коды передачи байтов по системной шине приведены в таблице 1.2.

Возможные типы циклов шины приведены в таблице 1.3. Символ #, стоящий после названия сигнала означает, что активный уровень сигнала – нижний. Сигнал М означает обмен с DRAM, IO – обмен с портом, D – передача данных, С – передача команды, W – запись, R – чтение DRAM или порта соответственно.

Таблица 1.2. Коды передачи байтов по системной шине.

/BЕ3 /ВЕ2 /ВЕ1 /ВЕ0 БАЙТЫ В 32-БИТОВОМ СЛОВЕ ДАННЫХ
D(D24/31) C(D16/23) B(D8/15) A(D0/7)
1 1 1 0 - - - A
1 1 0 1 - - B -
1 0 1 1 - C - C
0 1 1 1 D - D -
1 1 0 0 - - B A
1 0 0 1 - C B -
0 0 1 1 D C D C
1 0 0 0 - C B A
0 0 0 1 D C B A
0 0 0 0 D C B A

Таблица 1.3. Типы циклов шины.

M/IO# D/C# W/R#
0 0 0 - подтверждение прерывания
0 0 1 - не используется
0 1 0 - чтение данных из УВВ
0 1 1 - запись данных в УВВ
1 0 0 - чтение команды из ОЗУ
1 0 1 - 1) останов: Addr=2, /BE0-/BE3=1101, A[31/2]=0
- 2) отключение: Addr=0, /BE0-BE3=1111,A[31/2]=0
1 1 0 - чтение данных из ОЗУ
1 1 1 - запись данных в ОЗУ

Из таблицы типов циклов шины видно, что циклов шины может быть восемь:

1) чтение ОЗУ без блокировки шины (/LOCK=H),

2) чтение ОЗУ с блокировкой шины (/LOCK=L),

3) запись в ОЗУ без блокировки шины (/LOCK=H),

4) запись в ОЗУ с блокировкой шины (/LOCK=L),

5) чтение из УВВ или регистров FPU,

6) запись в УВВ или в регистры FPU,

7) подтверждение прерывания,

8) цикл останова или выключения.

Но основных, обменных циклов, – четыре: чтение ОЗУ, запись в ОЗУ, чтение порта ввода-вывода и запись в порт ввода-вывода. Остальные циклы шины либо варианты основных (с блокировкой или без блокировки), либо служебные, а не обменные.

1.4.3.3) Конвейерная обработка команд в CPU

Шесть автономных блоков микропроцессора i386 составляют систему конвейерного выполнения команд.

Исполнение команды, в общем виде, состоит из 6 тактов:

ФАК──>ВК──>ФАО──>ВО──>ОП──>ЗпРез

здесь:

ФАК – формирование адреса команды,

ВК – выборка команды,

ФАО – формирование адреса операнда,

ВО – выборка операнда,

ОП – выполнение текущей операции,

ЗпРез – запись результата операции.

Конвейерное выполнение программы – это когда в разных автономных блоках микропроцессора одновременно выполняются разные такты нескольких смежных команд. Например, ЗпРез команды n-1, собственно ОП команды n, ФАК команды n+1, ВК команды n+2 и ФАК команды n+3.

Обработка команды в CPU i386, в свою очередь, состоит из четырех этапов:

1) преобразование адресов при сегментированной или страничной организации памяти (выполняется в блоке MMU);

2) выборка полей команды из ОЗУ и накопление их в стеке очереди команд (выполняется в PU);

3) дешифрация команд из очереди и накопление дешифрованных кодов операций в стеке декодированных команд (выполняется в блоке IDU);

4) выполнение операции в EU, под микропрограммным управлением, и формирование статусных флагов.

Для ускорения выполнения команд в CPU, моделей i386 и старше, организован конвейер команд:

- каждая из команд в свое время находится в стадии выборки, хранения, дешифрации, формирования адреса и – выполнения;

- для смежных команд эти стадии (такты выполнения) обычно выполняются разными узлами CPU одновременно, в режиме совмещения, если соответствующие узлы микропроцессора в это время свободны;

- работа CPU, по отношению к системной магистрали, синхронна, а между узлами BIU, PU, IDU, EU – асинхронна.

Счетчик команд EIP в EU автоматически модифицирует адрес следующей команды по словам или двойным словам, в зависимости от длины команды, задаваемой входом /BS16. Информация в EIP, системных и сегментных регистрах блока MMU используется при формировании физического адреса для выборки следующей команды.

Одновременно с адресным формированием в EU, в работе находится одна из команд очереди в IDU, в которое, в свой черед, подгружается команда из PU.

Обмен данными между CPU и системой осуществляет BIU по запросу от EU, либо при наличии свободного места в очереди команд.

Если EU выполняет длинную команду, не требующую новых данных из системы, а узлы очередей заполнены, то BIU может находиться в, так называемом, холостом цикле.

В многопроцессорных системах, когда шина передается от одного ведущего модуля другому, отключаемые модули переводят свои шины в состояние высокого импеданса – Z-состояние. В это время отключенный от шины CPU, или контроллер имеет возможность автономно выполнять все команды, находящиеся в стеках, до тех пор, пока CPU не потребуется шина для обмена. Если же в это время шина все еще занята, то CPU прекращает работу, находясь в состоянии ожидания (Time-Out), пока шина не освободится (линия /READY=H, т. е. пассивна).

Контрольные вопросы.

1. Из каких тактов состоит выполнение команды в CPU?

2. Что такое цикл шины в РС?

3. В чем смысл сигнала HOLD?

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5184
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее