86125 (Элементарное изложение отдельных фрагментов теории подгрупповых функторов), страница 3

2016-07-29СтудИзба

Описание файла

Документ из архива "Элементарное изложение отдельных фрагментов теории подгрупповых функторов", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "математика" в общих файлах.

Онлайн просмотр документа "86125"

Текст 3 страницы из документа "86125"

Пусть - некоторая непустая формация и для каждой группы система состоит из всех -субнормальных в подгрупп.

Покажем, что - подгрупповой функтор. Пусть -субнормальна в . И пусть и - такие члены цепи (1), что , где - нормальная в подгруппа.

Покажем, что - максимальная подгруппа в . Допустим, что для некоторой подгруппы . Тогда поскольку максимальна в , то либо , либо .

Пусть имеет место первое. Тогда поскольку , то . Противоречие. Значит, , т.е. . Поэтому . Противоречие. Итак, ряд таков, что в нём для любого имеет место одно из двух условий:

1) ;

2) - максимальная подгруппа в . He теряя общности, мы можем считать, что все члены ряда (2) различны. Заметим, что поскольку то

Итак, - -субнормальная подгруппа в . Понятно также, что если - -субнормальная подгруппа в , то - -субнормальная подгруппа в . Таким образом, - подгрупповой функтор. Для обозначения такого функтора мы будем применять запись .

Класс групп называется гомоморфом, если он содержит все гомоморфные образы всех своих групп. Гомоморф конечных групп называется формацией, если каждая конечная группа обладает наименьшей по включению нормальной подгруппой (обозначаемой символом ) со свойством .

Лемма 3.1 Пусть - формация, . Тогда

Доказательство. Пусть . Тогда

Отсюда следует, что . С другой стороны, поскольку - гомоморф, то

Откуда получаем . Из и следует равенство .

Лемма доказана.

Пример 10. Пусть - некоторый класс конечных групп и - формация. Пусть для любой группы

Покажем, что - подгрупповой - функтор.

Действительно, пусть и . Тогда , и поэтому, согласно лемме 3.1, мы имеем

Следовательно, . Аналогично, если , то . Следовательно, - подгрупповой -функтор. Для обозначения такого функтора мы применяем запись .

Пример 11. Для каждой группы через обозначим совокупность всех абнормальных максимальных подгрупп из . Понятно, что - подгрупповой функтор. Для обозначения такого функтора мы будем применять запись .

4. Решетки подгрупповых функторов

Аспект применения подгупповых функторов состоит в сопоставлении группе некоторой решетки подгупповых функторов свойства которой тесно связаны со свойствами самой группы. Это позволяет использовать строение группы в зависимости от условий налогаемых на соответствующую решетку подгупповых функторов.

Следует отметить также, что используя понятие подгуппового функтора можно строить новые типы решеток, что указывает на полезность этого понятия и для теории решеток.

Пусть - некоторый класс групп. Будем говорить, что - ограниченный класс, если найдется такое кардинальное число , что для всех имеет место . Везде в дальнейшем мы предполагаем, что - некоторый ограниченный класс групп.

Обозначим через, множество всех подгрупповых -функторов, а через - множество всех замкнутых подгрупповых -функторов. На множестве введем частичный порядок , полагая, что имеет место тогда и только тогда, когда для любой группы справедливо .

Для произвольной совокупности подгрупповых -функторов определим их пересечение для любой группы . Понятно, что - нижняя грань для в . Мы видим, что - полная решетка с нулем и единицей . Понятно, что функтор , где для всех , является верхней гранью для в .

Заметим, что если - произвольный набор замкнутых подгрупповых -функторов, то, очевидно, - замкнутый подгрупповой -функтор. А поскольку замкнутым является и функтор , мы видим, что также является полной решеткой.

Оказывается, что свойства таких решеток тесно связаны со свойствами групп, входящих в . Отметим, например, что если содержится в классе конечных групп, то решетка является цепью тогда и только тогда, когда для некоторого простого числа класс состоит из элементарно-абелевых -групп. С другой стороны, решетка является цепью тогда и только тогда, когда все группы из являются -группами. Покажем, что в общем случае не является подрешеткой в . Для этого достаточно установить, что если - класс всех конечных групп и , , где и - различные простые числа, то функтор не является замкнутым. Пусть , где - группа порядка , a - группа порядка . Понятно, что и . Таким образом, если бы функтор был бы замкнутым, то мы бы имели Но, как нетрудно заметить, во множество входят лишь такие подгруппы из для которых имеет место одно из двух: или . Это означает, что . Следовательно, функтор не является замкнутым.


5. Классы групп с заданными решетками подгрупповых функторов

Сопоставляя классу конечных групп решетки и можно изучать свойства групп из в зависимости от свойств решеток и .

Лемма 20.6. Пусть - подгрупповой функтор и - группа. Если и , тогда .

Доказательство. Если - канонический эпиморфизм на , то

Так как мы видим по определению подгрупповых функторов, что .

Лемма доказана.

Пусть - элемент группы . Тогда если для некоторого натурального числа имеет место , то наименьшее натуральное число с таким свойством называется порядком элемента . Говорят, что - группа экспоненты , если каждый ее неединичный элемент имеет порядок .

Пусть - простое число. Тогда группа называется элементарно абелевой -группой, если - абелева группа экспоненты .

Лемма 20.7. Пусть , - элементарно абелевы -группы с . Тогда имеет подгруппу такую, что .

Доказательство. Нам необходимо рассмотреть лишь случай, когда - бесконечная группа.

Пусть и , где для всех и . Пусть - подмножество в такое, что . И пусть , где и . Тогда ясно, что

Следовательно, .

Лемма доказана.

Напомним, что класс групп называется наследственным, если он содержит все подгруппы всех своих групп. Класс групп называется конечным многообразием, если он наследственен, является гомоморфом и содержит прямое произведение (с конечным числом сомножителей) любых своих групп.

Пусть - простое число, делящее порядок группы . Подгруппа группы называется силовской -подгруппой в , если и - степень числа . Известная в теории групп теорема Силова утверждает, что для любого простого числа в любой конечной группе с имеется силовская -подгруппа. Конечная группа называется -группой, если ее порядок является степенью числа .

Обозначим через - класс всех конечных абелевых групп. Ввиду теоремы

Теорема. Пусть - такой набор конгруэнций -алгебры A, что . Пусть прямое произведение факторалгебр и

Тогда - мономорфизм алгебры в алгебру и входит подпрямо в ., класс является формацией. Обычно вместо пишут . Подгруппа называется коммутантом группы . В теории групп хорошо известно, что если - конечная -группа, то . Легко проверить, что если , то

Теорема 20.8. Пусть - конечное многообразие локально конечных групп, причем каждая группа из либо счетна, либо конечна. Тогда в том и только в том случае решетка является цепью, когда существует такое простое число , что каждая группа в является элементарно абелевой -группой.

Доказательство. Мы сначала предположим, что каждая группа в является элементарно абелевой -группой. Тогда для каждого кардинального числа , мы полагаем (см. пример 20.2). Понятно, что влечет, что . Для доказательства того, что является цепью нам необходимо только показать, что для любого подгруппового функтора со свойством найдется кардинальное число такое, что

Предположим, что для всех кардинальных чисел . Тогда . Поскольку , то найдется группа такая, что для некоторой ее подгруппы мы имеем . Пусть . Поскольку , найдется группа такая, что для некоторой ее подгруппы мы имеем . По лемме 20.6, мы видим, что для всех подгрупп из , удовлетворяющих условию , мы имеем . Следовательно, . Используя лемму 20.7, мы видим, что имеется подгруппа в группе такая, что

Но , и поэтому . Если - канонический эпиморфизм, который отображает на , то , и поэтому . Это противоречие показывает, что для некоторого кардинального числа имеем место .

Так как и так как каждая группа в - либо конечна, либо счетна, то найдется натуральное число такое, что . Пусть - наименьшее натуральное число такое, что . Мы покажем, что . Предположим, что и пусть - группа из такая, что . В этом случае пусть . Тогда . Теперь, по выбору числа , мы имеем . Это означает, что найдется группа такая, что для некоторой подгруппы из с . Пусть - подгруппа в такая, что и . Тогда . Так как , мы имеем , и поэтому . Но тогда , и поэтому , противоречие. Следовательно Значит, .

Теперь мы предположим, что решетка является цепью. Пусть и - конечная группа. Предположим, что порядок группы делится по крайней мере на два простых числа и . Пусть

И пусть - силовская -подгруппа в и - силовская -подгруппа в , соответственно. Тогда

Значит, и . Это показывает, что не является цепью, что противоречит нашему предположению. Следовательно, найдется такое простое число , что каждая конечная группа из является -группой.

Мы теперь покажем, что каждая группа в является абелевой. Предположим, что это не так и пусть - неабелева группа в . В этом случае некоторая ее подгруппа , порожденная элементами , является конечной неабелевой -группой. Так как по условию класс является наследственным, то . Пусть , где - класс всех абелевых групп. Поскольку , то , и поэтому . Следовательно, мы имеем . Теперь пусть где . И пусть - коммутант подгруппы , . Тогда и ясно, что . Значит, . Но поскольку , мы имеем . Таким образом, не является цепью. Полученное противоречие показывает, что каждая группа в является абелевой. Аналогично можно показать, что экспонента каждой группы из делит число .

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
428
Средний доход
с одного платного файла
Обучение Подробнее