85991 (Математическая модель системы слежения РЛС)

2016-07-29СтудИзба

Описание файла

Документ из архива "Математическая модель системы слежения РЛС", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "математика" в общих файлах.

Онлайн просмотр документа "85991"

Текст из документа "85991"

Содержание

Содержание 1

Введение 3

1 Общая теория оптимального управления 6

1.1 Допустимые управления 6

1.2 Основные направления в теории оптимальных процессов 11

1.2.1 Метод динамического программирования 12

1.2.2 Принцип максимума 13

1.3 Программное управление 16

1.4 Постановка задачи и способы решения 18

2 Система оптимального управления 24

2.1 Математическое описание электромеханической системы 24

2.2 Идентификация авторегрессионно-регрессионной модели 29

2.3 Формирование ограничений 37

2.4 Формирование оптимальных траекторий 42

2.5 Анализ решений 50

2.6 Общая структура системы оптимального управления 55

2.7 Полученные результаты 58

3 Практическая реализация 63

3.1 Реализация оптимального управления в среде пакета matlab 63

3.2 Выбор микроконтроллера 64

4 Экономическое обоснование проекта 66

4.1 Технико-экономическая характеристика 66

4.2 Маркетинговая ориентация 66

4.3 оценка научно-технической результативности и социальной эффективности НИР 68

4.4 Производственный план 74

4.4.1 Расчёт затрат на разработку 75

4.4.2 Затраты на создание опытного образца 77

4.4.3 Затраты на эксплуатацию 79

4.4.4 Ценообразование 79

Выводы 80

5 Безопасность и экологичность проекта 81

5.1 Анализ опасных и вредных факторов 82

5.2 Мероприятия по улучшению условий труда 83

5.2.1 Помещения и их освещение 83

5.2.2 Уровень шума и вибрация 85

5.2.3 Параметры микроклимата 86

5.2.4 Защита от электромагнитных и электростатических полей 87

5.2.5 Электробезопасность 90

5.2.6 Дисплейные терминалы и ПЭВМ в составе АРМ 91

5.2.7 Организация и оборудование рабочих мест с ВДТ и ПЭВМ 93

5.2.8 Требования к организации режима труда и отдыха при работе на АРМ 95

5.3 Устойчивость проекта к чрезвычайным ситуациям 97

5.4 Экологичность проекта 98

5.5 Выводы 99

Заключение 100

Приложение 101

Блок-схема файл-функции OPTIMUM_CONTR 101


Введение

Во многих областях техники и технологии приходится иметь дело со следующей задачей, которую можно трактовать как задачу «сопровождения цели». Причем, наблюдаемый процесс в некоторых случаях является детерминированным, т.е. полностью определенным, а в некоторых — не известным, но и в том и в другом случае в нем присутствует шум — случайная составляющая. Заданием для управляемого объекта служит движение другого объекта — задающего. Таким образом, задача слежения сводится к задаче перевода системы из начального состояния в наперед заданное состояние, которое определяется фазовым состоянием наблюдаемой системы.

В начальный момент времени t0 объект находится в фазовом состоянии x0; требуется выбрать такое управление u(t), которое переведет объект в заранее заданное конечное фазовое состояние x1 (отличное от x0). При этом нередко бывает, что начальное состояние x0 заранее неизвестно.

Такое управление часто осуществляется человеком (оператором), который следит за приборами и старается выбирать управление, поддерживающее объект в требуемом рабочем режиме.

Однако в современных условиях высокого развития техники оператор зачастую не может успешно справиться с этой задачей ввиду сложности поведения объекта, большой быстроты протекания процессов и т. п. Поэтому чрезвычайно важно создать такие приборы, которые сами, без участия человека, управляли бы работой объекта (например, в случае выхода объекта из рабочего состояния возвращали бы его в это рабочее состояние). Такие приборы сейчас очень распространены в технике, их изучением занимается теория автоматического управления.

В общем случае на вход регулятора подаются фазовые координаты объекта. Регулятор конструируется так, что его выходная величина u, поданная на вход объекта, нужным образом управляет работой объекта (т. е., например, возвращает объект в рабочее состояние, если он почему-либо вышел из этого состояния).

Обычно требуется, чтобы переходный процесс (т. е. процесс перехода из начального фазового состояния x0 в предписанное конечное состояние x1) был в определенном смысле «наилучшим», например, чтобы время перехода было наименьшим или чтобы энергия, затраченная в течение переходного процесса, была минимальной и т. п. Такой «наилучший» переходный процесс называется оптимальным процессом.

Разумеется, желательно, чтобы регулятор не просто возвращал объект в рабочее состояние, а делал это наилучшим образом, например, в смысле быстродействия (т.е. возвращал объект в рабочее состояние за кратчайшее время). В связи с этим в теории автоматического управления рассматриваются весьма различные (по устройству и степени сложности) регуляторы. Рассмотрение регуляторов, которые применялись на практике и изучались в руководствах по автоматическому регулированию до возникновения теории оптимальных процессов, приводит к выводу, что уменьшение времени переходного процесса связано с усложнением конструкции регулятора; поэтому, усложняя конструкцию регулятора, можно лишь приближаться к «идеальному», «оптимальному» регулятору, который во всех случаях осуществляет переходный процесс за кратчайшее время.

Одной из важных заслуг теории оптимальных процессов является установление существования оптимальных регуляторов и создание математического аппарата, позволяющего рассчитывать такие регуляторы. Оптимальные регуляторы существенно отличаются от тех, которые до сих пор изучались в теории автоматического управления.

На данном уровне развития техники и технологии для такого рода управления в большинстве случаев используются стандартные регуляторы (например, ПИД-регуляторы). Во многих случаях их применение может быть оправдано и их работа удовлетворяет поставленным целям управления, но существуют ситуации, в которых применение таких регуляторов не дает необходимого результата. Использование ПИД-регуляторов может оказаться нецелесообразным в случае ограничений на управление. В такой ситуации, система в целом оказывается существенно нелинейной и классические приемы управления в этом случае не приемлемы.

В данной работе рассматривается система, состоящая из двух электроприводов, один из которых является ведущим, а другой — ведомым. Ведомый двигатель должен двигаться синхронно с ведущим. Система должна отрабатывать заданную траекторию с необходимой точностью и максимальным быстродействием.


1 Общая теория оптимального управления

1.1 Допустимые управления

Наиболее перспективным решением экстремальных задач является их решение на основе теории принципа максимума Понтрягина. В данной работе ставилась задача оптимизации по времени, для чего и были использованы методы оптимального управления, предложенные Л.С. Понтрягиным, В.Г. Болтянским, Р.В. Гамкрелидзе. [1]

Задача оптимального быстродействия заключается в отыскании такого управления u(t), для которого фазовая траектория x(t) проходит через точку x1 и переход из х0 в х1 осуществляется за кратчайшее время. Такое управление u(t) называется оптимальным управлением (в смысле быстродействия); точно так же соответствующую траекторию x(t), по которой фазовая точка за кратчайшее время переходит из состояния x0 в состояние x1 называется оптимальной траекторией.

Обычно управляющие параметры u1,..., ur не могут принимать совершенно произвольные значения, а подчинены некоторым ограничениям. Это обусловлено техническими характеристиками реальных объектов управления, а также конструкцией регулирующих устройств.

Например, для двигателя постоянного тока (ДПТ), одним из управляющих параметров служит напряжение якоря; однако именно в силу конструктивных особенностей ДПТ этот параметр подчинен ограничениям указанного типа. Так, значение этого параметра не может принимать сколь угодно большое значение.

Для объекта, содержащего r управляющих параметров u1, u2, ..., ur, в приложениях часто встречается случай, когда эти параметры могут произвольно меняться в следующих пределах:

Т. е. каждая из величин u1, u2, ..., ur представляет собой отдельный управляющий параметр, область изменения которого не зависит от значений остальных управляющих параметров и задается неравенствами

(1.1)

Заметим, что при r = 2 точки , координаты которых подчинены неравенствам (1.1), заполняют прямоугольник (рисунок 1.1); при r = 3 неравенства (1.1) определяют в пространстве переменных u1, u2, u3 прямоугольный параллелепипед.

В общем случае будем считать, что в соответствии с конструкцией объекта и условиями его эксплуатации задано в пространстве переменных u1, ..., ur некоторое множество U и управляющие параметры u1, u2, ..., ur должны в каждый момент времени принимать лишь такие значения, чтобы точка принадлежала множеству U. Т. е. разрешается рассматривать лишь такие управления u(t), что для любого t. Множество U называется областью управления.

Область управления U, в общем случае, может быть не только параллелепипедом, но может иметь более или менее геометрически сложный характер, так как благодаря конструкции объекта между управляющими параметрами могут существовать некоторые связи, выражаемые некоторыми уравнениями или неравенствами. Указанные области управления должны входить в математическое описание объекта.

Для технических задач важен случай замкнутого множества U, т.е. случай, когда точка может находиться не только внутри множества, но и на его границе. Т.е. для «рулей» допустимы и их крайние положения.

Для полного осмысления данного вопроса необходимо сделать еще одно, очень важное, предположение о характере управлений. Возможны несколько случаев представления управляющих воздействий. А именно, в одном случае, когда это позволяет точность представления, можно предполагать, что «рули», положения которых характеризуются управляющими параметрами u1, u2, ..., ur, безынерционны, так что есть возможность, если нужно, мгновенно переключать эти «рули» из одного положения в другое, т. е. менять скачком значения управляющих параметров u1, u2, ..., ur в пределах области управления.

В другом случае, когда точность расчетов не допускает таких приближений нужно предполагать, что управляющие воздействия не могут меняться скачкообразно на сколь угодно большую величину, т.е. существует ограничение не только на значение управляющего параметра, но и на скорость изменения этого параметра. В этом случае достаточно написать , где — скорость изменения управляющего параметра, и принять за управляющий параметр величину . Т. о. существует ограничение вида

(1.2)

что несколько осложняет поиск оптимального управления.

Всякий реальный процесс обладает некоторой «инерционностью», но во всяком реальном управляемом объекте всегда можно найти такие управляющие параметры, которые, в пределах заданной точности, можно считать безынерционными.

В соответствии с этим будут рассматриваться не только непрерывные, но и кусочно-непрерывные управления u(t). Класс кусочно-непрерывных управлений хорош тем, что, во-первых, позволяет получить точное математическое решение оптимальной задачи для широкого класса примеров, а во-вторых, наиболее интересен и удобен для технической реализации.

Необходимо уточнить, что функция со значениями в области управления U называется кусочно-непрерывной, если она состоит из конечного числа непрерывных кусков (рисунок 1.2), т.е. непрерывна для всех рассматриваемых t, за исключением лишь конечного числа моментов времени, где функция u(t) может терпеть разрывы первого рода; последнее означает, что в каждой точке разрыва предполагается существование конечных пределов слева и справа:

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее