84823 (* Алгебры и их применение), страница 5

2016-07-29СтудИзба

Описание файла

Документ из архива "* Алгебры и их применение", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. .

Онлайн просмотр документа "84823"

Текст 5 страницы из документа "84823"

р (Р) = {0, 1}, где

р (Р) – точечный спектр при условии, что Р ≠ 0 и Р ≠ I.

Доказательство. Рассмотрим выражение Рх - λх = y, х, y Н, λ

С. Тогда (1 - λ) Рх = Рy . Если λ ≠ 1, то Рх =

Рy. Если х ≠ 1, то х =

(

Рy - y), тогда

(Р) = {0, 1}.

Так как Р ≠ 0 и Р ≠ I, то существует х ≠ 0 такой, что Рх ≠ 0. Тогда Р(Рх) = Рх, то есть 1

р (Р). Существует y ≠ 0: (I - Р)y ≠ 0, тогда Р(I - Р)y = 0 = 0 · (I - Р)y, то есть 0

р (Р). Итак,

(Р) =

р (Р) = {0, 1}.

1.2. Постановка задачи. Пусть заданы два ортопроектора Р1 и Р2 в унитарном пространстве Н. Тогда мы знаем спектр каждого из них. Найдем спектр суммы Р1 + Р2 в неприводимых представлениях.

1.3. Спектр в одномерном пространстве. Пусть dimH =1. Пусть, как и выше, Нк – область значений оператора Рк к = 1,2. Обозначим через А = Р1 + Р2 и найдем (А).

1) Р1 = Р2 = 0, то для любого х Н Ах = 0 или Ах = 0 · х, то есть 0

(А).

2) Р1 = 0, Р2 = I, то для любого х Н2 = Н Ах = х, то есть 1

(А).

3) Р1 = I, Р2 = 0, то для любого х Н1 = Н Ах = х.

4) Р1 = Р2 = I, то для любого х Н1 = Н2 = Н Ах = Р1х + Р2х = 2х, то есть 2

(А).

Таким образом, если dimH =1, то (А)

{0, 1, 2}.

1.4. Спектр в двумерном пространстве. Пусть dimH =2. Сохраним обозначения (1.1.) Главы II.

1) х Н0,0 , тогда Ах = 0 и 0

(А).

2) х Н0,1 или х

Н1,0 , тогда Ах = х и 1

(А).

3) х Н1,1, тогда Ах = 2х, то есть 2 (А).

Если существуют i, j= 0,1 такие, что Нi,j ≠ {0}, то существуют k,l = 0,1 такие, что Нi,j Нk,l = H. В этом случае (А) {0, 1, 2}.

Пусть теперь Нk,l = {0} для любых k,l = 0,1. Допустим, что существует одномерное инвариантное подпространство L относительно Р1 и Р2, тогда АL L. Пусть х L, тогда Рkх = λкх (k = 1, 2 ). Так как Рk ортопроектор, то возможны случаи:

λ1 = 0, λ2 = 0;

λ1 = 0, λ2 = 1;

λ1 = 1, λ2 = 0;

λ1 = 1, λ2 = 1;

Но это означает, что k,l = 0,1 такие, что Нk,l ≠ {0} вопреки предположению. Тогда пара Р1, Р2 неприводима. Значит мы можем записать матрицы операторов Р1 и Р2 в некотором ортонормированном базисе, согласно теореме 1.1. главы II.

Р1 = , Р2 τ (0, 1)

Найдем спектр линейной комбинации ортопроекторов aР1 + bР2, a и b С. Для этого решим характеристическое уравнение det(aР1 + bР2 – λI) = 0.

(1.1.)

Тогда , (1.2)

Положим a = 1, b =1, ε = , тогда λ1 = 1+ε , λ2 = 1-ε и 0<ε<1 (поскольку 0<τ<1.

Тогда (А) {0, 1, 2} {1+ε , 1-ε}. Причем собственные значения 1+ε и 1-ε входят в спектр А одновременно.

1.5. Спектр в n-мерном пространстве. Пусть dimH =n. Если Н =К L, где К, L инвариантные подпространства относительно оператора А, то для любого х Н существует единственное разложение x = k +l, k K, l L. Пусть λ (А), тогда Ах = λх =λk +λl;, следовательно, если пространство Н разложено в ортогональную сумму инвариантных подпространств, то спектр оператора А можно найти как объединение спектров сужений оператора А на соответствующие инвариантные подпространства.

Используя лемму 1.2. главы II, представим Н в виде ортогональной суммы подпространств Н0 = Н0,0, Н1=Н0,1 Н1,0, Н2=Н1,1 и двумерных, инвариантных относительно А, подпространств Нφк φк (0, ), (к = 1,…, s). При этом операторы Р1 и Р2 неприводимы в Нφк (к = 1,…, s), и собственные значения 1+εк, 1-εк входят одновременно в спектр А. Так как А*=А, то соответствующие собственные векторы ортогональны. Тогда имеет место разложение на собственные подпространства

Нφк = Н1+εк Н1-εк , причем dimН1+εк = dimН1-εк = 1 (1.3)

Если φк ≠ φi, то εк ≠ εi (так как εк = =cosφк и φк (0, )). Объединим все Нφк , у которых одинаковые φк , в одно слагаемое, и обозначим его через Нφк. При этом, если dimНφк = 2qk, то есть Нφк состоит из qk экземпляров двумерных подпространств, отвечающих одному φк , то объединяя вместе все соответствующие одномерные собственные подпространства, получим Нφк = Н1+εк Н1-εк , dimН1+εк = dimН1-εк = qk.

Теорема 1.2. Самосопряженный оператор А представим в виде суммы двух ортопроекторов А = Р1 и Р2 тогда и только тогда, когда

(А) {0, 1, 2} ( {1+ε , 1-ε}), 0<εк<1,

причем dimН1+εк = dimН1-εк к = 1,…, m.

Доказательство. Пусть А = Р1 и Р2, тогда его спектр был найден выше:

(А) {0, 1, 2} ( {1+ε , 1-ε}), где 0<εк<1для любого к = 1,…, m.

Обратно, пусть нам известен спектр оператора А и известно, что размерности соответствующих собственных подпространств совпадают, то есть

dimН1+εк = dimН1-εк . Существует единственное разложение Н в ортогональную сумму инвариантных подпространств ((1.1.) Глава II):

Н = Н(0) Н(1) Н(2) ( (С2 Нк)) (1.4.)

(1.4.) можно записать иначе

Н = Н(0) Н(1) Н(2) ( (С2 (Н1+εк Н1-εк ))) (1.5.)

Зададим ортопроекторы Р1 и Р2 следующим образом

P1 = PН2 ( ( Iк )) (1.6.)

Р2 = PН1 PН2 ( Iк )) (1.7.)

где PНк – ортопроектор в Н на Н(к) (к = 1, 2), Is – единичный оператор в Hs s=1,…, m. Но тогда

Р1 + Р2 = PН1 PН2 ( Iк )) = А, при этом А = А*

1.6. Линейная комбинация ортопроекторов. Пусть теперь с. Из (1.2.) следует λ1 + λ2 = a + b. Пусть λ2 = ε, тогда λ1 = a + b – ε.

Оценим ε. Заметим, что (a +b)2 – 4ab(1-τ) = (a - b)2 + 4abτ > 0.

Тогда ε = > = 0, то есть ε = 0.

Допустим, что ε ≥ a , тогда

a ≤

≤ b – a

(b - a)2 +4abτ ≤ (b – a)2

abτ ≤ 0, но abτ > 0 и значит ε < a

Итак,

λ 1 = ε

λ2 = a + b – ε. (1.8.)

0 < ε < a

Пусть dimH =n. Тогда справедлива теорема.

Теорема 1.3. Самосопряженный оператор А представим в виде линейной комбинации ортопроекоров А = aР1 + bР2, 0

(А) {0, a, b, a + b} ( {εк , a + b - εк}), 0<εк<1, и

dimНεк = dimНa+b-εк (Нεк , Нa+b-εк - собственные подпространства оператора А, отвечающие εк) к=1,…m.

Доказательство. Пусть А = aР1 + bР2, 0 (А).

1) х Н0,0, то Ах = 0 и 0 (А);

2) х Н0,1 , то Ах = bx и b (А);

3) х Н1,0 , то Ах = ax и a (А);

4) х Н1,1 , то Ах = (a+b)x и a+b (А).

Тогда (А) {0, a, b, a + b} ( {εк , a + b - εк}), где 0<εк<1, к=1,…m. Причем числа εк, a + b - εк входят одновременно в спектр А, и соответству- ющие собственные подпространства ортогональны и одномерны, так как А=А*. Тогда сумма всех собственных подпространств, отвечающих одному εк также инвариантна относительно А и dimНεк = dimНa+b-εк = qk. (с учетом кратности εк)

Обратно. Существует единственное разложение Н в силу (1.4.)

Н = Н(0) Н(a) Н(b) Н(a+b) ( (С2 Нк)) (1.9.)

Где Н(0)=Н0,0 , Н(a) =Н1,0 , Н(b)=Н0,1 , Н(a+b)=Н1,1 или

Н = Н(0) Н(a) Н(b) Н(a+b) ( (Нεк Нa+b-εк) (1.10.)

Положим

P1 = Pa Pa+b ( ( Iк )) (1.11.)

Р2 = Pb Pa+b ( Iк )) (1.12.)

Но тогда

aР1 + bР2 = aPa bPb (а+b)Pa+b (a ( Iк ))

(b Iк )) = A.

Спектр оператора А совпадает с {0, a, b, a + b} ( {εк , a + b - εк}), (0<εк<1, к=1,…m) по построению и А = А* как вещественная комбинация ортопроекторов.

§ 2. Спектр суммы двух ортопроекторов в сепарабельном гильбертовом пространстве

2.1. Спектр оператора А = Р1 + Р2. Изучим оператор Р1 + Р2 в сепарабельном гильбертовом пространстве.

Теорема 2.1. Самосопряженный оператор А представим в виде суммы двух ортопроекторов А = Р1 + Р2 тогда и только тогда, когда (А) = [0, 2] и пространство Н можно разложить в ортогональную сумму инвариантных относительно А пространств

Н = Н0 Н1 Н2 ( (С2 L2((0, ), dρк))) (2.1.)

и меры ρк инвариантны относительно преобразования 1+х → 1-х.

Доказательство. Пусть А = Р1 + Р2. Н0=Н0,0 , Н1=Н1,0 Н0,1 , Н2=Н1,1

Поставим в соответствие φ→ε cosφ, где φ (0, ). Тогда, как было найдено выше, спектр (А) [0, 2] и Н можно разложить (опираясь на спектральную теореме 2.3. главы II) в ортогональную сумму (2.1.)

Н = Н0 Н1 Н2 ( (С2 L2((0, 2), dρк)))

Поскольку собственные подпространства, соответствующие собственным значениям А 1+ε , 1-ε, 0<ε<1 входят одновременно в спектр и их значения совпадают, то каждая мера ρк (к = 1, 2, …) должна быть инвариантной относительно преобразования 1 + х → 1- х.

Обратно. Пусть имеет место (2.1.) и (А) [0, 2]. Тогда зададим ортопроекторы Р1΄ Р2΄ равенствами

Р1΄ = P1 P2 ( ( Iк ))

Р2΄ = P2 ( Iк ))

где Pi: Н→Нi (i = 0, 1, 2) ортопроектор, Ik – единичный оператор в L2((0, 2), dρк)). Тогда А =Р1΄ + Р2΄ - самосопряженный оператор, спектр которого содержится в [0, 2], так как Рк΄ (к = 1, 2) является суммой ортопроекторов на взаимно ортогональные пространства.

2.2. Спектр линейной комбинации А = aР1 + bР2 (0

Теорема 2.2. Самосопряженный оператор А представим в виде линейной комбинации двух ортопроекторов А = aР1 + bР2, 0 (А) [0, a] [b, a+b] и Н можно представить в виде ортогональной суммы инвариантных относительно А пространств

Н = Н0 Нa Нb Нa+b ( (С2 L2([0, a] [b, a+b], dρк)))) (2.2.)

и меры ρк инвариантны относительно преобразования х→a+b.

Доказательство. Пусть А = aР1 + bР2 (0 (А) [0, a] [b, a+b] и собственные подпространства, отвечающие собственным значениям оператора А входят в Н одновременно (причем их размерности совпадают) то аналогично теореме 2.1. получаем

Н = Н0 Нa Нb Нa+b ( (С2 L2([0, a] [b, a+b], dρк))))

где меры ρк (к = 1, 2, …) инвариантны относительно преобразования х → a+b-х.

Обратно, пусть (А) [0, a] [b, a+b] и имеется разложение Н (2.2.). Тогда зададим Р1 и Р2 следующим образом

P1 = Pa Pa+b ( ( Iк ))

Р2 = Pb Pa+b ( Iк ))

где Рα: Н→Нα , α = a, b, a+b – ортопроекторы, Iк – единичный оператор в L2([0,a] [b, a+b]). Тогда

А = aР1 + bР2 = aР1 bР2 (a+b)Pa+b ( ( Iк ))

( Iк ))

ЗАКЛЮЧЕНИЕ

В дипломной работе изучена пара ортопроекторов в сепарабельном гильбертовом пространстве Н, приведено описание всех неприводимых и неэквивалентные *-представления *-алгебры P2 .

P2 = С .

А именно: 4 одномерных π0,0(p1) = 0, π0,0(p2) = 0; π0,1(p1) = 0, π0,1(p2) = 1; π1,0(p1) = 1, π1,0(p2) = 0; π1,1(p1) = 1, π1,1(p2) = 1.

И двумерные: , τ (0, 1)

Изучен спектр операторов Р1 + Р2, aР1 + bР2 (0

Список литературы

Ахиезер Н.И., Глазман И.М. Теория линейных операторов в гильбертовом пространстве, М., Наука, 1966.

Березенский Ю.М., Ус Г.Ф., Шефтель З.Г. Функциональный анализ, К., Выща школа, 1990.

Браттели У., Робинсон Д. Операторные алгебры и квантовая статистическая механика: С*- W* -алгебры. Группы симметрий. Разложение состояний., М., Мир, 1982.

Диксмье Ж. С*-алгебры и их представления. М., Наука, 1974.

Кириллов А.А. Элементы теории представлений. М., Наука, 1978.

Кужель А.В. Алгебры конечного ранга, С. СГУ, 1979.

Ленг С. Алгебра. М., Мир, 1968.

Мерфи Д. С*-алгебры и теория операторов. М., Мир, 1998.

Наймарк М.А. Нормированные кольца. М., Гостехиздат, 1956.

Рудин У. Функциональный анализ. М., Мир, 1975.

NishioK, Linear algebra and its applications 66: 169-176, Elsevier Science Publishing Co., Inc., 1985.

Samoilenko Y.S., Representation theory of algebras, Springer, 1998.

Для подготовки данной работы были использованы материалы с сайта http://ref.com.ua/

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5302
Авторов
на СтудИзбе
416
Средний доход
с одного платного файла
Обучение Подробнее