84050 (Настоящая теория чисел), страница 4

2016-07-29СтудИзба

Описание файла

Документ из архива "Настоящая теория чисел", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "математика" в общих файлах.

Онлайн просмотр документа "84050"

Текст 4 страницы из документа "84050"

_____

2 4 8 7 5 1 Z ( |1*2)

____

8 5 2 8 5 часть Z( |2*4)

_____

4 1 7 4 часть Z ( |7*7)

_____

4 7 1 часть Z ( |1*4)

____

1 7 часть Z ( |4*7)

7

Однако, можно утверждать, что подобное приведение последовательностей натуральных корней дельт к виду треугольного циклида не является причиной появления цикла натуральных корней количеством членов равным одному, а является следствием разложения базовой дельты на возможные варианты суммы, разницы и пр. Так, разложение базовой дельты как натурального корня на два натуральных корня по принципу сложения имеет всего девять вариантов, на три натуральных корня мы будем рассматривать разложение отдельно каждого из двух полученных ранее натуральных корней опять же на два варианта, таким образом, для каждого разложения на два натуральных корня мы также получим девять разложений на три натуральных корня и т.д.

Например:

натуральный корень можно разложить как 1,8; 2,7; 3,6; 4,5; 5,4; 6,3; 7,2; 8,1; 9,9.

Разложим вариант 1,8 на возможные сочетания из трех натуральных корней:

9

1 8

1 9 8

2 8 9

3 7 1

4 6 2

5 5 3

6 4 4

7 3 5

8 2 6

9 1 7

Данный принцип получения из цикла натуральных корней цикличной последовательности натуральных корней дельт дает возможность понимания состава чисел из цифр и натуральных корней.

Раздел 5. Действия с циклами

5.1. Взаимодействие числа с циклом натуральных корней.

При взаимодействии числа с циклом каждый член цикла натуральных корней обособленно взаимодействует с числом.

Правило 9. При извлечении натуральных корней из числовой последовательности, полученной путем взаимодействия числа с циклом натуральных корней, мы получаем цикл натуральных корней.

Формулы взаимодействия числа с циклом натуральных корней:

_____ _____ _____

1. Z ( |х + d) + а => Z ( |с + d), где с = |х + а ;

_____ _____ _____

2. Z ( |х + d) - а => Z ( |с + d), где с = |х - а ;

______ ______ _____

3. Z( |х + d) * а => Z( |с + d), где с = |х * а ;

_____ _____ _____

4. Z( |х + d) : а => Z( |c + d), где с = |d : а ;

_____ _____ _____

5. Z( |х * s) * а => Z( |c * s), где с = |х * а, исключая

случаи, когда х или s являются эманациями натуральных корней 3,6,0;

_____ _____ ____

6. Z( |х * s) : а => Z( |c * s), где с = |х : а, исключая

случаи, указанные в правилах умножения;

_____ ____

7. Z( |х * s) + а => Z, циклом дельт которого будет Z(s) = Z( |х * s );

_____ _____

8. Z( |х * s ) - а => Z, циклом дельт которого будет Z(s) = Z( |х * s).

Например. _____

Прибавим к циклу натуральных корней Z( |1 + 2) число 4:

_____

Цикл Z( |1 + 2) - 3,5,7,9,2,4,6,8,1.

Прибавим к каждому члену число 4: 3 + 4 = 7, 5 + 4 = 9, 7 + 4 = 11, 9 + 4 = 13, 2 + 4 = 6, 4+ 4 = 8, 6 + 4 = 10, 8 + 4 = 12, 1 + 4 = 5.

Мы получили числовую последовательность 7,9,11,13,6,8,10,12,5.

При извлечении из нее натуральных корней мы получим цикл натуральных корней 7,9,2,4,6,8,1,3,5, т.е.

______

Z ( |5 + 2), где 5 = 1 + 4.

Естественно, что при продолжении действия последовательность натуральных корней не изменится. Также она не изменится и при применении любых эманаций членов цикла натуральных корней вместо них.

При взаимодействии числа с циклом натуральных корней, представляющим из себя синтез n подциклов мы получаем цикл натуральных корней, синтезирующий n подциклов, полученных в результате взаимодействия числа х с подциклами основного цикла.

5.2. Взаимодействие цикла натуральных корней с циклом натуральных корней

При взаимодействии одного цикла натуральных корней с другим циклом натуральных корней член одного цикла натуральных корней, являющийся некоторым n-м знаком этого цикла, взаимодействует

с членом другого цикла натуральных корней, являющийся некоторым n-м знаком этого цикла. Возможно взаимодействие и большего, чем два, количества циклов.

Правило 10. При извлечении натуральных корней из числовой последовательности, полученной путем взаимодействия одного цикла натуральных корней с другим, мы получаем цикл натуральных корней.

Формулы взаимодействия циклов натуральных корней:

_____ _____ _____

1. Z( |х + у) + Z( |а + b) => Z( |с + d),

_____ _____

где с = |х + а, d = |у + b;

______ ______ _____ _____ _____

2. Z( |х + у ) - Z( |а + b) => Z( |с + d), где с = |х - а, d = |у - b ;

_____ _____

3. Z( |х + у) * Z( |a + b) => Z, циклом дельт которого Z(d) будет один из циклов натуральных корней сложения;

_____ _____ _____ ____ ____

4. Z( |х * у) * Z( |а * b) => Z( |c * d), где с = |х *а, d = |у * b;

_____ _____ _____ ____ ____

5. Z(|х * у) : Z( |а * b) => Z( |c * d), где с = |х : а, d = |у : b;

_______ ___ ____

| n _______ | n | n

6. Z( |(х * у) ) = Z( |(c * d) ), где с = |(х) , d = |(у) .

При умножении или делении циклов натуральных корней умножения исключением являются случаи применения циклов натуральных корней умножения, первый член или дельта которых являются эманациями чисел 3,6,9.

Покажем это на примере арифметической прогрессии. Прибавим к арифметической прогресии

_____

1,4,7,10,13,16,19,22,25,т.е. Z( |7 + 3) арифметическую прогрессию

_____

3,5,7,9,11,13,15,17,19, т.е. Z( |1 + 2):

1 + 3 = 4, 4 + 5 = 9, 7 + 7 = 14, 10 + 9 = 19, 13 + 11 = 24,

16 + 13 = 29, 19 + 15 = 34, 22 + 17 = 39, 25 + 19 = 44.

Мы получили числовую последовательность 4,9,14,19,24,29,34,39, 44. При извлечении из нее натуральных корней мы получим последовательность натуральных корней 4,9,5,1,6,2,7,3,8,т.е.

_____

Z( |8 + 5), где 8 = 7 + 1, 5 = 3 + 2.

Приведем пример для формулы 6. Возведем члены цикла натуральных корней

______

умножения Z( |2 * 5 ) в степень а = 2:

2 2 ___ 2 ___ 2 ____ 2 ___ 2

1 = 1; 5 = 7|25; 7 = 4|49 ;8 = 1|64 ; 4 = 7|16 ; 2 = 4.

Путем извлечения натуральных корней мы получили цикл натуральных

__ __

______ | 2 | 2

корней умножения Z( |4 * 7), где 4 = |2 , 7 = |5.

При взаимодействии циклов мы получаем цикл натуральных корней, который совмещает в себе подциклы, полученные в результате взаимодействия подциклов основных циклов.

5.3. Взаимодействие членов цикла.

Рассмотрим свойства циклов натуральных корней сложения с постоянной дельтой. Данная часть раздела показывает лишь внутренние взаимодействия таких циклов и указывает на возможность подобных взаимодействий для циклов натуральных корней с переменной дельтой.

5.3.1. При сложении членов цикла натуральных корней сложения

_____

Z( |р + r) количеством n и дальнейшем извлечении натуральных корней из получаемых сумм, мы получаем цикл натуральных корней

_____

сложения сумм Z( |а + b), где b = kr, где k - коэффициэнт.

Рассмотрим различные типы сложения для ряда х1,х2,х3,х4, х5,х6,х7,х8,х9.

_______ _______

1. |х1 + х2 = у1, |х3 + х4 = у2 и т.д.

При данном типе сложения коэффициент k будет равен

натуральному корню из квадрата количества членов n, т.е. при n = 2, k = 4;

n = 3, k = 9;

____

n = 4, k = 7|16;

____

n = 5, k = 7|25;

____

n = 6, k = 9|36;

____

n = 7, k = 4|49;

____

n = 8, k = 1|64;

______

Например. Сложим члены цикла Z( |0 + 2 ) при n = 7:

___

2 + 4 + 6 + 8 + 1 + 3 + 5 = 2|29,

___

7 + 9 + 2 + 4 + 6 + 8 + 1 = 1|37,

___

3 + 5 + 7 + 9 + 2 + 4 + 6 = 9|36,

___

8 + 1 + 3 + 5 + 7 + 9 + 2 = 8|35,

___

4 + 6 + 8 + 1 + 3 + 5 + 7 = 7|34,

___

9 + 2 + 4 + 6 + 8 + 1 + 3 = 6|33,

___

5 + 7 + 9 + 2 + 4 + 6 + 8 = 5|41,

___

1 + 3 + 5 + 7 + 9 + 2 + 4 = 4|31,

___

6 + 8 + 1 + 3 + 5 + 7 + 9 = 3|39.

Таким образом, мы получили ряд 2,1,9,8,7,6,5,4,3.

_____

т.е. Z( |3 + 8), где 8 = 4 * 2, т.е. k = 4.

Легко заметить, что вертикальные ряды представляют из себя циклы с дельтой, равной 5. Это будет происходить во всех случаях. Полученные вертикальные ряды будут являться циклами натуральных корней сложения с дельтой цикла d, равной натуральному корню произведения r - дельты складываемого цикла и n - количества складываемых членов.

Любопытно отметить, что при данном типе сложения натуральный

корень суммы первых семи по порядку членов циклов типа

_____

Z( |0 + r) равен r.

_______ _______

2. |х1 + х2 = у1, |х2 + х3 = у2 и т.д.

___

При n = 2, k = 2 = |n ;

___

n = 3, k = 6 = |2n ;

___

n = 4, k = 3 = |3n ;

___

n = 5, k = 2 = |4n ;

___

n = 6, k = 3 = |5n ;

___

n = 7, k = 6 = |6n ;

___

n = 8, k = 2 = |7n .

____________ _____________

3. |х1 + х2 + х3 = у1, |х2 + х3 + х4 = у2 и т.д.

________________ _________________

4. |х1 + х2 + х3 + х4 = у1, |х2 + х3 + х4 + х5 = у2.

_____________________ _____________________

5 .|х1 + х2 + х3 + х4 + х5 = у1, |х2 + х3 + х4 + х5 + х6 = y2,

_________________________ __________________________

6. |х1 + х2 + х3 + х4 + х5 + х6 = у1, |х2 + х3 + х4 + х5 + х6 + х7 = у2,

______________________________ ______________________________

7. |х1 + х2 + х3 + х4 + х5 + х6 + х7 = у1, |х2 + х3 + х4 + х5 + х6 + х7 + х8 = у2.

__________________________________ __________________________________

8. |х1 + х2 + х3 + х4 + х5 + х6 + х7 + х8 = у1, |х2 + х3 + х4 + х5 + х6 + х7 + х8 + х9 = у2

При каждом из этих типов сложения по вертикальные ряды будут представлять из себя циклы натуральных корней сложения.

Вышеизложенные типы сложения безусловно взаимосвязаны. Это показывает развитие коэффициента k для различных типов сложения при одинаковом n:

n = 2 k = 4 k = 2

n = 3 k = 9 k = 6 k = 3

n = 4 k = 7 k = 3 k = 8 k = 4

n = 5 k = 7 k = 2 k = 6 k = 1 k = 5

n = 6 k = 9 k = 3 k = 6 k = 9 k = 3 k = 6

n = 7 k = 4 k = 6 k = 8 k = 1 k = 3 k = 5 k = 7

n = 8 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k =8

Получаемые по горизонтали ряды являются частями циклов натуральных корней сложения. Например, при n = 5 мы получаем

_____

ряд 7,2,6,1,5, являющийся частью цикла Z (|3 + 4).

_____

5.3.2. При поэтапном сложении n членов цикла натуральных корней сложения Z ( |а + b) :

х1,х2,х3 ...хk, находящихся в цикле через h членов, мы получаем цикл натуральных корней сложения

______ ___

Z( |с + d) , где d = |nb путем извлечения натуральных корней из по лучаемых сумм.

Например. При извлечении натуральных корней из сумм членов

_____ _____

Z( |0 + 4) при n = 2 и d = 3 мы получим цикл натуральных корней Z( |3 + 8), где 8 = 2 * 4

При умножении членов цикла натуральных корней умножения

по вышеприведенным принципам, мы получим цикл натуральных корней умножения путем извлечения натуральных корней из получаемых произведений.

_____

Например. Используя принцип 5.3.2. для Z( |5 * 5) при n = 2, d = 3 мы получим цикл натуральных корней

_____ _____

Z( |2 * 7), где 7 = |5 * 2.

5.3.3. Суммы числовых рядов Нижеизложенные принципы являются прямым следствием принципа циклов натуральных корней и, соответственно, принципа эманационного построения числового ряда.

Cумма членов арифметической прогрессии с постоянной дельтой d от любой эманации числа х до любой эманации числа у является постоянной величиной по натуральному корню.

Например. Найдем сумму членов арифметической прогрессии с дельтой d = 1 и первым членом а = 1 от эманаций 1-цы до эманаций 2-ки: ___ ____

Сумма членов от 1 до 2 равна 3, от 1 до 11 равна 3|66, от 10 до 20 равна 3|165, т.е. в любом из этих случаев сумма по натуральному корню равна числу 3.

При рассмотрении сумм членов числовых последовательностей с переменной дельтой d = а,b,с...n от эманаций числа х до эма наций числа у мы найдем, что они не являются постоянными величинами по натуральному корню, но при построении в числовой ряд они представляют из себя цикл натуральных

_____

корней Z( |f + k), где k - натуральный корень суммы членов цикла натуральных корней, который мы получаем путем извлечения натуральных корней из членов данной числовой последовательности. Например. Рассмотрим цикл натуральных корней с переменной дельтой d = 2,7 и первым членом 1. Он будет иметь вид 1,3,1,3,1,3,1,3 и т.д. В данном случае натуральные корни сумм членов от 1до 1 выстроятся в числовой ряд 5,9,4,8,3,7,2,6,1, т.е.

______

цикл натуральных корней Z( |6 + 4), где число 4 является суммой членов цикла натуральных корней с переменной дельтой, т.е. 4 = 1 + 3.

Суммы членов арифметической прогрессии с некоторой постоянной дельтой d от некоторого числа а до чисел, являющихся членами некоторого цикла натуральных корней, представляют из себя члены некоторого цикла натуральных корней при извлечении из них натуральных корней.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5209
Авторов
на СтудИзбе
430
Средний доход
с одного платного файла
Обучение Подробнее