Главная » Просмотр файлов » А.В. Рожков, О.В. Ниссенбаум - Теоретико-числовые методы в криптографии

А.В. Рожков, О.В. Ниссенбаум - Теоретико-числовые методы в криптографии (1127102), страница 24

Файл №1127102 А.В. Рожков, О.В. Ниссенбаум - Теоретико-числовые методы в криптографии (А.В. Рожков, О.В. Ниссенбаум - Теоретико-числовые методы в криптографии) 24 страницаА.В. Рожков, О.В. Ниссенбаум - Теоретико-числовые методы в криптографии (1127102) страница 242019-05-11СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 24)

b) a = 246, b = 396; e) a= 6887, b = 6319; h) a = 1600, b = 1120;

c) a = 175, b = 14945; f) a = 1763, b = 1634; i) a = 2310, b = 3388.

    1. Пользуясь таблицей простых чисел, найти канонические разложения следующих чисел:

a) 492; d) 4144; g) 624239;

b) 22011; e) 2597; h) 422375;

c) 7533; f) 425106; i) 11502.

    1. Вычислить НОК(a,b).

a) a = 744, b = 198; d) a = 50, b = 42; g) a = 3131, b = 808;

b) a = 60, b = 1575; e) a= 231, b = 1089; h) a = 1063, b = 3;

c) a = 128, b = 81; f) a = 73, b = 219; i) a = 1960, b = 1232.

    1. Пользуясь свойствами функции Эйлера, вычислить φ(a).

a) a = 73; d) a = 343; g) a = 210;

b) a = 81; e) a= 6; h) a = 10800;

c) a = 97; f) a = 28; i) a = 32.

1.5. Выяснить, верны ли сравнения:

a) 25 ≡ —1 (mod 13); d) 3 ≡ 15 (mod 11); g) 128 ≡ 20 (mod 9);

b) 11 ≡ 3 (mod 2); e) 45 ≡ 12 (mod 11); h) 32 ≡ 5 (mod 7);

c) 100 ≡ 14 (mod 17); f) 98 ≡ 46 (mod 5); i) 13 ≡ 1 (mod 14).

1.6. Выписать полную и приведенную системы вычетов по модулю n. Сравнить количество чисел в приведенной системе вычетов со значением функции Эйлера от n.

a) n = 7; b) n = 9; c) n = 11; d) n = 16; e) n = 6; f) n = 2;

1.7. Вычислить абсолютно наименьший и наименьший неотрицательный вычеты числа a по модулю m.

a) a = 12, m = 15; d) a = 50, m = 12; g) a = —80 , m = 100;

b) a = 35, m = 31; e) a= 8, m = 15; h) a = —4, m = 3;

c) a = —1, m = 81; f) a = 8, m = 17; i) a = 11, m = 11.

1.8. Вычислить обратный элемент, если он существует:

a) 5-1 mod 8; d) 14-1 mod 25; g) 46-1 mod 51;

b) 7-1 mod 41; e) 13-1 mod 92; h) 77-1 mod 101;

c) 23-1 mod 63; f) 9-1 mod 27; i) 22-1 mod 25.

1.9. Пользуясь теоремой Эйлера, вычислить:

a) 9042 mod 41; d) 8485 mod 187; g) 3161613 mod 16;

b) 34160003 mod 15; e) (-2)634178 mod 117; h) 5186609 mod 9;

c) (-5)100016 mod 11; f) 50190021 mod 38; i) 347174007 mod 349;

1.10. Решить сравнения:

a) 5x ≡ 3(mod 11); d) 6x ≡15(mod 21); g) 13x≡8(mod 16);

b) 8x ≡ 5(mod 13); e) 16x≡26(mod 62); h) 25x≡50(mod 125);

c) 15x≡25(mod 17); f) 21x≡14(mod 42); i) 13x≡37(mod 29).

1.11. Решить системы сравнений.

a) ; c) ; e) ;

b) ; d) ; f) .

1.12. Вычислить, пользуясь свойствами символа Якоби:

a) ; c) ; e) ; g) ; i) ; k) ;

b) ; d) ; f) ; h) ; j) ; l) .

1.13. Решить следующие квадратичные сравнения по простому модулю, если решение существует.

a) x2≡17(mod 19); d) x2≡2 (mod 7); g) x2≡3 (mod 41);

b) x2≡3 (mod 13); e) x2≡3 (mod 11); h) x2≡2 (mod 17);

c) x2≡8 (mod 41); f) 2x2≡10 (mod 11); i) 3x2≡15(mod 31).

1.14. Решить следующие квадратичные сравнения по составному модулю, если решение существует.

a) x2≡7(mod 9); g) x2≡1 (mod 32); m) x2≡11 (mod 35);

b) x2≡—1(mod 25); h) x2≡67 (mod 81); n) x2≡5 (mod 12);

c) x2≡32(mod 49); i) x2≡59 (mod 125); o) x2≡9 (mod 20);

d) x2≡1(mod 4); j) x2≡4(mod 6); p) x2≡31 (mod 105);

e) x2≡3(mod 8); k) x2≡1(mod 15); q) x2≡4 (mod 105);

f) x2≡9(mod 16); l) x2≡1(mod 24); r) x2≡ 16 (mod 75).

1.15. Определить, сколько решений имеют сравнения.

a) x2≡—1(mod 59); d) x2≡ 17(mod 32); g) x2≡1(mod 150);

b) x2≡ 3(mod 83); e) x2≡ 25(mod 96); h) x2≡4(mod 343);

c) x2≡ 1(mod 8); f) x2≡ 2(mod 315); i) x2≡1(mod 2).

1.16. Выписать все квадраты и все псевдоквадраты из приведенной системы вычетов по модулю n.

a) n = 15; b) n = 21; c) n = 33; d) n = 6; e) n = 14; f) n = 35.

1.17. Указать, какие их приведенных ниже чисел являются числами Блюма.

a) 7; b) 21; c) 47; d) 469; e) 35; f) 59.

1.18. Отыскать p8 и p9 – 8-е и 9-е простые числа, представимые в виде 4k+3. Составить число Блюма n=p8p9. На основе BBS-генератора с ключом s0=121 составить ключевую последовательность длиной 10 бит.

1.19. Существуют ли первообразные корни по модулю n, и если существуют, то сколько их?

a) n = 15; b) n = 71; c) n = 53; d) n = 202; e) n = 16; f) n = 25.

1.20. Найти первообразные корни по следующим модулям:

a) 3; c) 27; e) 26; g) 43; i) 169; k) 89;

b) 9; d) 13; f) 18; h) 86; j) 4; l) 41.

Упражнения к Главе 2.

2.1. Вычислить сумму и произведение многочленов f(x) и g(x) на Z2[x]:

a) f(x)=x7+x5+x+1, g(x)=x4+x+1; c) f(x)=x8+x2, g(x)=x3+x2+1;

b) f(x)=x4+x, g(x)=x2+1; d) f(x)=x5; g(x)=x5+x.

2.2. Вычислить остаток от деления f(x) на g(x) на Z2[x].

a) f(x)=x8+x4+x+1, g(x)=x3+x+1; c) f(x)=x10+x2+x+1, g(x)=x2+x+1;

b) f(x)=x4+x, g(x)=x2+x+1; d) f(x)=x5+x4+1; g(x)=x2+x.

2.3. Вычислить НОД(g(x),f(x)) на Z2[x].

a) f(x)=x6+x5+x3+x2+1, g(x)= x5+x4+x+1;

b) f(x)=x6+x4, g(x)=x4+1;

c) f(x)=x4+x3+x2+x, g(x)=x5+x3;

d) f(x)=x9+x8+x; g(x)=x7+x4+x3+1.

Упражнения к Главе 3:

3.1. Осуществить 2-факторизацию следующих чисел, используя метод Ферма и метод квадратичного решета с решетами по модулям 4, 5, 7. Сравнить количество итераций для этих двух методов.

a) 12317; c) 7081; e) 551; g) 1679; i) 6111; k) 1221;

b) 851; d) 18161; f) 481; h) 7313; j) 1197; l) 609.

3.2. Осуществить 2-факторизацию следующих чисел, используя ро-метод Полларда.

a) 1183; b) 1881; c) 2597; d) 1057; e) 5461; f) 299.

3.3. Осуществить факторизацию следующих чисел, используя p—1 –метод Полларда.

a) 133; b) 209; c) 161; d) 527; e) 1393; f) 3277.

3.4. Вычислить следующие дискретные логарифмы, пользуясь алгоритмом «шаг младенца – шаг великана».

a) log3 14 mod φ(31); b) log5 42 mod φ(47); c) log3 30 mod φ(89).

3.5. При помощи алгоритма исчисления порядка вычислить следующие дискретные логарифмы.

a) log3 57 mod φ(89); b) log3 61 mod φ(79); c) log3 279 mod φ(587).

Ответы к упражнениям.

Упражнения к Главе 1:

1.1. a) 13, b) 2, c) 35, d) 6, e) 71, f) 43, g) 48, h) 160, i) 154.

1.2. a) 22·3·41, b) 3·11·23·29, c) 35·31, d) 24·7·37, e) 72·53, f) 2·32·11·19·131, g)7·113·67 h) 53·31·109, i) 2·34·71.

1.3. a) 24552, b) 6300, c) 10368, d) 1050, e) 7623, f) 219, g) 25048, h) 31189, i)43120.

1.4. a) 72, b) 54, c) 96, d) 294, e) 2, f) 12, g) 48, h) 2880, i) 16.

1.5. a) верно, b) верно, c) неверно, d) неверно, e) верно, f) неверно, g) верно, h)неверно, i) неверно.

1.7. a) —3; 12, b) 4; 4, c)—1; 80, d) 2; 2, e)—7; 8, f) 8; 8, g) 20; 20, h)—1; 2, i)0;0.

1.8. a) 5, b) 6, c) 11, d) 9, e) 7, f) не существует, g) 10, h) 21, i) 8.

1.9. a) 23, b) 4, c) 5, d) 43, e) 4, f) 18, g) 3, h) 8, i) 221.

1.10. a) x≡5(mod 11), b) x≡12(mod 13), c) x≡13(mod 17), d) x≡6, 15, 20(mod 21), e) x≡21, 52(mod 62); f) решений нет; g) x≡8(mod 16), h) x≡2+5t(mod 125), где t= , i) x≡20(mod 29).

1.11. a) x≡8(mod 35), b) x≡52(mod 105), c) x≡53(mod 77), d) x≡101(mod 180), e) решений нет, f) x≡206(mod 210).

1.12. a) -1, b) -1, c) 1, d) 1, e) 0, f) 1, g) 1, h) 1, i) -1, j) -1, k) -1, l) -1.

1.13. a) ±6(mod 19), b) ±9(mod 13), c) ±7(mod 41), d) ±3(mod 7), e) ±5(mod 11), f) ±4(mod 11), g) решений нет, h) ±6(mod 17), i) ±6(mod 31).

1.14. a) ±4(mod 9), b) ±7(mod 25), c) ±9(mod 49), d) ±1(mod 4), e) решений нет, f) ±3, ±5(mod 16), g) ±1, ±15(mod 32), h) ±38(mod 81), i) ±53(mod 125), j) ±2(mod 6), k) ±1,±4(mod 15), l) ±1,±5,±7,±11(mod 24), m) ±9,±16(mod 35), n) решений нет, o) ±3,±7(mod 20), p) решений нет, q) ±2,±23,±37,±47(mod 105), r) ±4,±29 (mod 75).

1.15. a) решений нет, b) 2, c) 4, d) 4, e) 8, f) решений нет, g) 4, h) 2, i) 1.

1.18. 1011011101.

1.19. a) не существует, b) 24 корня, c) 24 корня, d) 40 корней, e) нет существует, f) 8 корней.

1.20. a) 3, b) 2, c) 2, d) 2, e) 17, f) 11, g) 3, h) 3, i) 2, j) 3, k) 3, l) 6.

Упражнения к Главе 2:

2.1. a) x7+x5+x4; x11+x9+x8+x7+x4+x2+1; b) x4+x2+x+1; x6+x4+x3+x; c) x8+x3+1; x11+x10+x8+x5+x4+x2; d) x; x10+x6.

2.2. a) x2+x+1, b) 0, c) x, d) 1.

2.3. a) (x+1), b) x2+1, c) x3+x, d) x2+x+1.

Упражнения к Главе 3:

3.4. a) 18, b) 24, c) 87.

3.5. a) 36, b) 45, c) 15.

Приложение 1.

Таблица простых чисел < 2558 и их наименьших первообразных корней.

p

g

p

g

p

g

p

g

p

g

p

g

p

g

p

g

2

1

101

2

233

3

383

5

547

2

701

2

877

2

1049

3

3

2

103

5

239

7

389

2

557

2

709

2

881

3

1051

7

5

2

107

2

241

7

397

5

563

2

719

11

883

2

1061

2

7

3

109

6

251

6

401

3

569

3

727

5

887

5

1063

3

11

2

113

3

257

3

409

21

571

3

733

6

907

2

1069

6

13

2

127

3

263

5

419

2

577

5

739

3

911

17

1087

3

17

3

131

2

269

2

421

2

587

2

743

5

919

7

1091

2

19

2

137

3

271

6

431

7

593

3

751

3

929

3

1093

5

23

5

139

2

277

5

433

5

599

7

757

2

937

5

1097

3

29

2

149

2

281

3

439

15

601

7

761

6

941

2

1103

5

31

3

151

6

283

3

443

2

607

3

769

11

947

2

1109

2

37

2

157

5

293

2

449

3

613

2

773

2

953

3

1117

2

41

6

163

2

307

5

457

13

617

3

787

2

967

5

1123

2

43

3

167

5

311

17

461

2

619

2

797

2

971

6

1129

11

47

5

173

2

313

10

463

3

631

3

809

3

977

3

1151

17

53

2

179

2

317

2

467

2

641

3

811

3

983

5

1153

5

59

2

181

2

331

3

479

13

643

11

821

2

991

6

1163

5

61

2

191

19

337

10

487

3

647

5

823

3

997

7

1171

2

67

2

193

5

347

2

491

2

653

2

827

2

1009

11

1181

7

71

7

197

2

349

2

499

7

659

2

829

2

1013

3

1187

2

73

5

199

3

353

3

503

5

661

2

839

11

1019

2

1193

3

79

3

211

2

359

7

509

2

673

5

853

2

1021

10

1201

11

83

2

223

3

367

6

521

3

677

2

857

3

1031

14

1213

2

89

3

227

2

373

2

523

2

683

5

859

2

1033

5

1217

3

97

5

229

6

379

2

541

2

691

3

863

5

1039

3

1223

5


Характеристики

Тип файла
Документ
Размер
2,98 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6276
Авторов
на СтудИзбе
315
Средний доход
с одного платного файла
Обучение Подробнее