GL_14_Свободные радикалы (О.А. Реутов, А.Л. Курц, К.П. Бутин - Органическая химия в 4-х томах (Word)), страница 6

2019-05-11СтудИзба

Описание файла

Файл "GL_14_Свободные радикалы" внутри архива находится в папке "О.А. Реутов, А.Л. Курц, К.П. Бутин - Органическая химия в 4-х томах (Word)". Документ из архива "О.А. Реутов, А.Л. Курц, К.П. Бутин - Органическая химия в 4-х томах (Word)", который расположен в категории "". Всё это находится в предмете "органическая химия" из 5 семестр, которые можно найти в файловом архиве МГУ им. Ломоносова. Не смотря на прямую связь этого архива с МГУ им. Ломоносова, его также можно найти и в других разделах. .

Онлайн просмотр документа "GL_14_Свободные радикалы"

Текст 6 страницы из документа "GL_14_Свободные радикалы"

Та же самые реакции могут быть инициированы не только термически, но и фотохимически, где особенное значение приобрел метод импульсного фотолиза. В методе импульсного фотолиза источник радикалов подвергается действию мощной короткой вспышки УФ- или видимого света. При этом разлагается значительная часть исходного субстрата, в результате чего создается высокая концентрация радикалов, которые легко можно обнаружить различными физическими методами (ЭПР, оптическая спектроскопия и т.д.), но эти методы недостаточно чувствительны для обнаружения радикалов в низких концентрациях в опытах по фотолизу в стационарном режиме облучения. Обычный фотолиз как метод генерации радикалов используется в препаративной органической химии, тогда как импульсный фотолиз оказался наиболее ценным при выяснении структуры радикалов и изучении кинетики радикальных реакций.

Другими источниками свободных алкильных радикалов являются азоалканы, для которых, в отличие от пероксидов (см. ниже), не характерны реакции индуцированного разложения. Способность азосоединений к радикальному распаду зависит от строения азоалкана и стабильности образующегося радикала. Если полученный радикал относительно стабилен, разложение азосоединений происходит при температуре ниже 100ºС, например, разложение азобисизобутиронитрила:

Период полураспада азобисизобутиронитрила при 60, 80 и 100ºС составляет 17, 2 и 0,1 ч соответственно. С другой стороны, распад азометана на радикалы начинается только выше 400ºС, что, конечно, создает определенные трудности для генерации простых алкильных радикалов. Более предпочтительным для этой цели оказывается фотолиз азоалканов в индифферентной среде.

Описанное выше термическое разложение пероксидов и гидроперксидов является мономолекулярной реакцией, которой должна соответствовать кинетика первого порядка по субстрату.

В большинстве случаев разложение пероксидов протекает с более высокой скоростью и более сложной кинетикой. такое поведение носит название индуцированного разложения. Оно наблюдается в тех случаях, когда, по крайней мере частично, разложение пероксида происходит в результате бимолекулярной реакции с участием радикалов, присутствующих в растворе. Так, например, индуцированное разложение этилпероксида может быть представлено следующим образом:

Степень индуцированного разложения определяется реакционной способностью и концентрацией генерированных радикалов и чувствительностью субстрата к радикальной реакции. Атакующий радикал X может сам получаться из пероксида, но может происходит и из другого источника.

Таким образом, для индуцированного разложения по сравнению с мономолекулярным гомолизом имеют значение и структура исходного пероксида и микропримеси, и даже природа реакционной среды. При разложении диацил- и диалкилпероксидов в спирте частицей, участвующей в продолжении цепи является алкильный радикал:

Третий способ генерации нестабильных активных и реакционноспособных радикалов основан на переносе электрона в окислительно-восстановительных реакциях, катализируемых ионами переходных металлов. Присоединение или отщепление одного электрона от диамагнитного субстрата приводит к возникновению радикальных частиц. Многие органические радикальные реакции включают ключевую стадию одноэлектронного переноса, инициируемого ионами меди, железа, кобальта, марганца, ванадия, церия, титана и других переходных металлов. Характерной особенностью этих переходных металлов является наличие двух или более относительно стабильных степеней окисления, различающихся на один электрон (Cu+, Cu2+; Fe2+, Fe3+; Co2+, Co3+; Ce3+, Ce4+ и т.д.).

Классическим примером генерации свободных радикалов в результате переноса одного электрона служит взаимодействие ионов железа с водным раствором пероксида водорода (Х. Фентон, 1894). Механизм этой реакции подробно изучен и может быть описан с помощью следующих уравнений:

Гидроксильные радикалы далее могут реагировать со многими классами органических соединений (см. 14.5.5). Одноэлектронное восстановление органических гидропероксидов с помощью Fe (II), Cu (I), Co (II), Ti (III) и других ионов переходных металлов приводит к образованию алкоксильных, а не гидроксильных радикалов:

Аналогично происходит разложение пероксиэфиров, катализируемое солями меди (I):

Этот метод генерации алкоксильных радикалов используется для введения ацилоксигруппы в аллильное положение алкена, например:

Для этой реакции предполагается следующая последовательность превращений:

Первоначально трет-бутокси-радикал отщепляет атом водорода из аллильного положения циклогексена с образованием аллильного радикала, который далее окисляется до карбокатиона ионом меди (II). Реакция завершается присоединением карбоксилат-иона к карбокатиону.

Наиболее подробно исследовано разложение диацилпероксидов, катализируемое солями меди. В первой стадии из диацилпероксида получается радикал, который затем окисляется до карбокатиона. Далее карбокатион стабилизируется в результате захвата нуклеофила, отщепления протона или перегруппировки:

В том случае, когда разложение диацилпероксидов, катализируемое солями меди, проводят в присутствии галогенид-, азид- или тиоцианат-иона, конечным продуктом, как правило, оказывается алкилгалогенид, алкилазид или алкилтиоцианат, и процесс носит название внутрисферного переноса лиганда:

Одноэлектронное окисление карбоксилат-иона (RCOO-) в карбоновой кислоте приводит к образованию ацилоксирадикала (RCOO), который далее отщепляет CO2 и дает алкильный радикал (R). Такое окисление карбоновых кислот реализуется под действием сильных одноэлектронных окислителей, таких, как ионы Mn (III), Ce (IV) и Pb (IV). Эти же ионы окисляют радикал R до карбокатиона R+ (окисление с переносом электрона), который затем претерпевает ряд хорошо известных дальнейших превращений. Состав продуктов реакции согласуется с механизмом, включающим образование карбокатиона.

Так, при окислении циклобутанкарбоновой кислоты тетраацетатом свинца получается практически такая же смесь ацетатов, что и при сольволизе тозилата циклобутанола:

Циклобутильные радикалы не перегруппировываются в отличие от карбокатиона, который подвергается перегруппировке Демьянова с сужением цикла.

Окислительное декарбоксилирование карбоновых кислот тетраацетатом свинца в присутствии галогенид-ионов приводит к алкилгалогениду (реакция Кочи, 1965):

Для реакции Кочи был предложен цепной механизм без образования карбокатиона в качестве дискретной частицы:

В первой стадии в результате внутримолекулярного окислительно-восстановительного процесса из карбоксилата Pb (IV) получаются алкил-радикал, CO2 и частица Pb (III). Алкил-радикал далее отщепляет галоген из комплекса Pb (IV) с образованием в конечном итоге соли Pb (III) и нового алкил-радикала. В отсутствие галогенид-иона основными продуктами оказываются алкены и эфиры уксусной кислоты.

Реакция Кочи представляет собой один из наиболее важных в синтетическом отношении примеров окисления радикала с переносом лиганда, роль которого выполняет галогенид-ион. Отличительная особенность окисления с переносом лиганда состоит в том, что эта реакция происходит без перегруппировки алкильной группы.

Так, например, при оксилении неопентил-радикала хлоридом меди (II) образуется только неопентилхлорид, тогда как в альтернативном процессе переноса электрона без переноса лиганда в реакции с ацетатом меди (II) получаются продукты перегруппировки:

Это означает, что в реакциях с переносом лиганда в переходном состоянии карбокатион не образуется в отличие от процессов с переносом электрона.

14.4.2. МЕТОДЫ ДЕТЕКТИРОВАНИЯ СВОБОДНЫХ РАДИКАЛОВ

14.4.2.а. СПЕКТРЫ ЭПР

Обычно радикалы определяют с помощью спектроскопии электронного парамагнитного резонанса (ЭПР). Принципы спектроскопии ЭПР очень близки к принципам гораздо более известной спектроскопии ЯМР. Неспаренный электрон в радикале имеет свой спин и, подобно протону, обладает собственным магнитным моментом. При наложении магнитного поля электрон будет прецессировать вокруг вектора поля с точно определенной частотой и, если ему сообщить энергию нужной частоты, претерпевать переходы между спиновыми состояниями. Концентрацию радикалов определяют сравнением площади кривой поглощения с площадью, полученной для образца с известной концентрацией радикалов. В качестве стандарта часто используют соль Фреми (KSO3)2NO.

Чтобы получить достаточно высокую стационарную концентрацию радикалов, используют генерирование радикалов в матрице при очень низких температурах, непосредственное генерирование в резонаторе спектрометра (фотохимически или электрохимически) или генерирование в проточных системах. Радикалы можно регистрировать в проточном методе не позднее, чем через 0,2 с после их образования. Предельно низкая концентрация радикалов около 10-8M.

Спектры ЭПР характеризуются тремя параметрами: g-фактором, константами сверхтонкого расщепления и шириной линий. g-Фактор по смыслу аналогичен химическому сдвигу в ЯМР. Разность g-факторов для данного радикала и свободного электрона дает информацию о структуре радикала.

Сверхтонкое расщепление возникает в результате взаимодействия неспаренного электрона с соседним магнитным ядром (1H, 13C, 14N, 17O и т.д.). Этот параметр используется для установления геометрии изучаемого радикала. В метильном радикале взаимодействие неспаренного электрона с тремя магнитно-эквивалентными протонами приводит к появлению квартета и соотношением линий 1:3:3:1. ЭПР-спектр радикала с центром на азоте состоит из триплета 1:1:1. Неспаренный электрон способен взаимодействовать также и с β-протонами, что дает возможность выяснить конформацию радикала.

Константы расщепления при взаимодействии с 13C гораздо больше по величине, если неспаренный электрон находится на s-орбитали, чем если он занимает p-орбиталь. Таким путем было установлено, что метильный радикал плоский (π-типа), а винильный и фенильный радикалы относятся к σ-типу.

14.4.2.б. СПИН-ЛОВУШКИ

Если радикалы нестабильны, то их стационарная концентрация в растворе настолько мала, что с помощью прямого снятия спектров ЭПР, даже в проточной системе, часто бывает очень трудно доказать их участие в качестве интермедиатов в реакциях органических соединений. В таких случаях можно использовать так называемые спин-ловушки (ловушки радикалов). Спин-ловушка обычно содержит двойную связь, по которой присоединяется короткоживущий радикал, при этом образуется новый радикал, обладающий значительно большей стабильностью, чем исходный:

Обычно в качестве спин-ловушей используют нитрозосоединения (например, 2-метил-2-нитропропан; X) и нитроны (N-трет-бутил-α-фенилнитрон; XI), которые быстро реагируют с самыми различными короткоживущими радикалами, образуя относительно долгоживущие нитроксилы (см. 14.3.3):

Анализируя спектр ЭПР образующихся нитроксильных радикалов, делают вывод о природе радикала R.

14.4.2.в. МЕТОД ХПЯ. РАДИКАЛЬНЫЕ ПАРЫ.

Если в ходе химической реакции, включающей радикальные интермедиаты, снимать спектр ЯМР, то можно установить присутствие короткоживущих радикалов. В обычной молекуле протоны распределены по спиновым состояниям (которых всего два) в соответствии с расщеплением Больцмана. Поскольку разница между этими состояниями очень мала, оба уровня заселены почти одинаково. Однако в продуктах некоторых радикальных реакций больцмановское распределение может быть существенно нарушено: избыточное число протонов занимает верхнее или нижнее спиновое состояние. Тогда магнитные ядра спонтанно испускают или поглощают излучение до тех пор, пока не вернутся в равновесное состояние. Поэтому в спектре ПМР-продукта, снятом в ходе возврата магнитных ядер к равновесному распределению, для некоторых линий будет наблюдаться резко повышенная интенсивность поглощения, а для других линий – отрицательные пики, т.е. испускание радиочастотного излучения.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5304
Авторов
на СтудИзбе
416
Средний доход
с одного платного файла
Обучение Подробнее