GLAVA4 (Конспект лекций по курсу Физическая химия)

2018-02-14СтудИзба

Описание файла

Файл "GLAVA4" внутри архива находится в папке "Конспект лекций по курсу Физическая химия". Документ из архива "Конспект лекций по курсу Физическая химия", который расположен в категории "". Всё это находится в предмете "физическая химия" из 4 семестр, которые можно найти в файловом архиве МПУ. Не смотря на прямую связь этого архива с МПУ, его также можно найти и в других разделах. Архив можно найти в разделе "лекции и семинары", в предмете "физическая химия" в общих файлах.

Онлайн просмотр документа "GLAVA4"

Текст из документа "GLAVA4"

37


мо, чтобы в каждой своей бесконечно малой стадии состояние системы, в которой этот процесс происходит, отвечало бы состоянию равновесия.

Состояние равновесия – особое состояние термодинамической системы, в которое она переходит в результате обратимого или необратимого процессов и может оставаться в нем бесконечно долго. Реальные процессы могут приближаться к обратимым, но для этого они должны совершаться медленно.

Процесс называется необратимым (естественным, спонтанным, самопроизвольным), если он сопровождается рассеянием энергии, т. е. равномерным распределением между всеми телами системы в результате процесса теплопередачи.

В качестве примеров необратимых процессов могут быть названы следующие:

  • замерзание переохлажденной жидкости;

  • расширение газа в вакуумированное пространство;

  • диффузия в газовой фазе или в жидкости.

Систему, в которой произошел необратимый процесс, можно возвратить в исходное состояние, но для этого над системой нужно совершить работу.

К необратимым процессам относится большинство реальных процессов, так как они всегда сопровождаются работой против сил трения, в результате чего происходят бесполезные энергозатраты, сопровождающиеся рассеянием энергии.

Для иллюстрации понятий рассмотрим идеальный газ, находящийся в цилиндре под поршнем. Пусть начальное давление газа Р1 при его объеме V1 (рис. 4.1).

Д

авление газа уравновешено насыпанным на поршень песком. Совокупность равновесных состояний описывается уравнением pV = const и графически изображается плавной кривой (1).

Если с поршня снять некоторое количество песка, то давление газа над поршнем резко снизится (от А до В) лишь после чего произойдет увеличение объема газа до равновесной величины (от В до С). Характер этого процесса – ломанная линия 2. Эта линия характеризует зависимость P=f (V) при необратимом процессе.

Рис. 4.1. Зависимость давления газа от его объема при обратимом (1) и необратимом процессах (2, 3).

Из рисунка видно, что при обратимом расширении газа совершаемая им работа (площадь под плавной кривой 1) больше, чем при любом необратимом его расширении.

Таким образом, любой термодинамический процесс характеризуется максимально возможной величиной работы, если он совершается в обратимом режиме. К аналогичному выводу можно прийти, если рассмотреть процесс сжатия газа. Только следует иметь ввиду, что в этом случае величина работы – отрицательная величина (рис. 4.1, ломаная 3).

3. Коэффициент полезного действия тепловой машины. Цикл Карно.

Классический пример применения второго начала термодинамики – определение максимально возможного коэффициента полезного действия (К. П. Д.) тепловой машины. Исторически исследования в этой области послужили исходным пунктом термодинамики. Из положений второго начала следует, что тепловая машина должна содержать не менее двух тел, находящихся при разных температурах: нагревателя при температуре Т1 и холодильника при температуре Т212). Для получения максимальной работы, перенос энергии от нагревателя к холодильнику должен осуществляться в обратимом режиме. Для осуществления переноса необходимо участие еще одного, так называемого рабочего тела, совершающего обратимый циклический процесс.

Отношение совершенной рабочим телом работы к сообщенной рабочему телу энергии – К.П.Д. тепловой машины ( ):

, (4.1)

где А – совершенная рабочим телом полезная работа;

q1 – энергия, полученная рабочим телом от нагревателя в результате теплопередачи;

q2 – энергия, теплопередачей возвращенная рабочим телом холодильнику.

Схема тепловой машины может быть представлена рис. 4.2.

Рис.4.2. Схема тепловой машины.

П

усть рабочий цикл тепловой машины состоит из двух изотерм (1 - 2 и 3 – 4) и двух адиабат (2 – 3 и 4 – 1). Такой цикл называется циклом Карно (рис. 4.3).

Все указанные на рис. 4.3 процессы являются обратимыми, поэтому исходное и конечное состояния газа совпадают. Рабочим телом является идеальный газ в количестве 1 моля, находящийся в цилиндре под поршнем.

Рис. 4.3. Цикл Карно.

Изотермическое расширение газа (1 –2) происходит в условиях контакта цилиндра с теплоотдатчиком (нагревателем), температура которого Т1. Газ расширяется до объема V2 и работа, им совершенная, равна поглощенной от нагревателя энергии:

. (4.2)

При адиабатическом расширении газа (2 – 3) цилиндр с поршнем отсоединяется от нагревателя и работа расширения газа выполняется за счет уменьшения его внутренней энергии:

. (4.3)

Изотермическое сжатие (3 – 4) газа происходит в условиях контакта цилиндра с холодильником (теплоприемником), а энергия, выделяющаяся при сжатии полностью поглощается холодильником:

. (4.4)

Работа, произведенная на последнем участке (4 – 1) цикла производится в условиях отсутствия контакта рабочего тела с холодильником и приводит к повышению запаса внутренней энергии газа и его температура увеличивается до Т2: .

Суммарная величина работы, выполненная рабочим телом за цикл определяется:

. (4.5)

Из уравнений адиабат:

, (4.6)

, (4.7)

следует:

. (4.8)

Следовательно (4.5) с учетом (4.8) примет вид:

. (4.9)

Тогда К. П. Д. вычисляется:

, (4.10)

окончательно:

. (4.11)

Соотношение (4.11), полученное для цикла Карно, можно рассматривать как аналитическое выражение второго начала термодинамики. Из (4.11) следует, что К. П. Д. тепловой машины зависит только от температур нагревателя и холодильника и он тем больше, чем ниже Т2.

Можно доказать, что К. П. Д. цикла Карно, состоящего из обратимых процессов, больше К.П.Д. любого другого цикла ( ), состоящего из нескольких обратимых процессов (теорема Карно):

. (4.12)

Высокое значение К. П. Д. цикла Карно является следствием не его специфической формы, а обратимостью всех его составляющих.

Из соотношения (4.12) следует:

или , (4.13)

откуда:

. (4.14)

Неравенство (4.14) - одна из форм записи второго начала термодинамики.

4. Работа холодильника (теплового насоса).

Режим работы холодильника (теплового насоса) циклический и может быть представлен циклом Карно (рис. 4.4).

Рис. 4.4. Цикл Карно в режиме холодильника.

Исходная точка – т. 4. На стадии 4 – 3 происходит изотермическое расширение газа за счет отбора энергии теплопередачей от холодильника с температурой Т2 (контакт рабочего тела с холодильником). Величина работы, совершенной рабочим телом:

А1 = q2 . (4.15)

На стадии (3 – 2), в условиях отсутствия контакта рабочего тела с холодильником, происходит адиабатическое сжатие газа, сопровождающееся нагревом последнего до температуры нагревателя Т1. Работа на этой стадии:

. (4.16)

На стадии (2 – 1) обеспечивается контакт рабочего тела с нагревателем и происходит изотермическое сжатие газа. При этом совершается работа:

-A3 = -q1 . (4.17)

На стадии (1 – 4) контакт с нагревателем отсутствует и адиабатическое расширение газа влечет за собой его охлаждение до температуры холодильника Т2. Начинается новый цикл работы теплового насоса. Эффективность работы холодильника оценивается холодильным коэффициентом :

, (4.18)

для варианта работы холодильника в обратимом режиме. В реальных условиях величина холодильного коэффициента определяется из выражения:

. (4.19)

5. Измерение рассеивания энергии. Энтропия.

Направление течения самопроизвольного процесса можно связать с распределением энергии: энергия падающего мяча рассеивается на огромное число беспорядочно колеблющихся частиц пола - это самопроизвольный, естественный процесс. То есть, необходимо отыскать такие направления реализации процесса, которые приводили бы к наибольшему рассеянию энергии - ее равномерному распределению между всеми частями термодинамической системы.

В этой связи удобно иметь функцию, показывающую как изменяется рассеивание энергии при переходе системы из одного состояния в другое. Такая функция была введена Рудольфом Клазиусом и названа энтропией.

Возможны два пути введения этой функции:

- рассеивание энергии можно вычислять (статистическое толкование энтропии);

- рассеивание энергии может быть связано с энергией, подведенной к системе теплопередачей (термодинамическое толкование энтропии).

Статистическое толкование энтропии.

Состояние системы может быть задано двумя способами: во-первых, совокупностью ее параметров состояния (макросостояние системы); во-вторых, положением каждой ее частицы, направлением и скоростью ее перемещения в пространстве (микросостояние истемы). При этом, как окажется, одно и то же макросостояние возможно при самых различных микросостояниях системы.

В качестве иллюстрации последнего утверждения можно обратиться к распределению трех молекул (1, 2, 3) по трем участкам объема (А, В, С) пространства.

Принимается, что в любой момент времени каждая из трех молекул может находиться в любом из трех отделений. Всего возможно 27 размещений молекул (табл. 4.1).

Таблица 4.1. Распределение молекул.

А

В

С

А

В

С

А

В

С

А

В

С

А

В

С

1

2

3

1, 2

3

-

3

1, 2

-

-

3

1, 2

1, 2, 3

-

-

1

3

2

1, 2

-

3

-

1, 2

3

3

-

1, 2

-

1, 2, 3

-

2

1

3

1, 3

2

-

2

1, 3

-

-

2

1, 3

-

-

1, 2, 3

2

3

1

1, 3

-

2

-

1, 3

2

2

-

1, 3

3

2

1

2, 3

1

-

1

2, 3

-

-

1

2, 3

3

1

2

2, 3

-

1

-

2, 3

1

1

-

2, 3

Эти размещения отвечают 27 микросостояниям. Причем, как уже оговаривалось выше, каждое микросостояние равновероятно, т. е. реализуется одинаково часто как и любое другое. Это важнейший постулат классической статистической физики.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5136
Авторов
на СтудИзбе
443
Средний доход
с одного платного файла
Обучение Подробнее