Главная » Все файлы » Просмотр файлов из архивов » Документы » Ответы на теорию к экзамену

Ответы на теорию к экзамену, страница 3

2018-02-14СтудИзба

Описание файла

Документ из архива "Ответы на теорию к экзамену", который расположен в категории "". Всё это находится в предмете "физика" из 2 семестр, которые можно найти в файловом архиве МПУ. Не смотря на прямую связь этого архива с МПУ, его также можно найти и в других разделах. Архив можно найти в разделе "к экзамену/зачёту", в предмете "физика" в общих файлах.

Онлайн просмотр документа "Ответы на теорию к экзамену"

Текст 3 страницы из документа "Ответы на теорию к экзамену"

Политропный процесс — термодинамический процесс, во время которого удельная теплоёмкость тела остаётся неизменной. Частными явлениями политропного процесса являются изопроцессы и адиабатный процесс.

Для идеального газа уравнение политропы может быть записано в виде:

pVn = C

где величина называется показателем политропы.

6.3 Средняя длина свободного пробега и число столкновении молекул.

Длиной свободного пробега молекулы газа называется расстояние, пролетаемое молекулой от одного столкновения до следующего. Эта величина в процессе соударений изменяется случайным образом, поэтому необходимо ввести среднее значение этой физической величины.

Для определения частоты столкновений и длины свободного пробега допустим, что все молекулы покоятся, а одна из них движется со средней тепловой скоростью v. Пусть все молекулы имеют одинаковый диаметр d. Пусть концентрация молекул равна n, причем для виртуального двумерного движения под концентрацией следует понимать число частиц, относящееся к единице площади

Вычислим число ударов, испытываемых летящей частицей за одну секунду. За это время она проходит путь, равный скорости. v, т.е. . Число частиц, находящихся на этой площади, равна . Это величина равна числу столкновений выделенной молекулы с другими частицами за 1 секунду. Разделив на эту величину путь v, пройденной молекулой за секунду, получим выражение для средней длины свободного пробега:

Эта формула получена в модели, в которой сталкивающаяся молекула имеет среднюю скорость, а остальные молекулы неподвижны. Учет реального движения других молекул довольно сложен, но практически не изменяет эту формулу, в ней дополнительно появляется лишь несущественный безразмерный множитель в знаменателе

7.1 Второе начало термодинамики

Энтропия системы может только возрастать(либо до достижения максимального значения оставаться неизменной) носит название закона возрастания энтропии или второго начала термодинамики dS>0

7.2Процессы обратимые и необратимые

Термодинамический процесс называется обратимым.если он может происходить как в прямом так и в обратном направлении, при чем если такои процесс происходит сначала в прямом, а потом в обратном направлении и система возвращается в исходное состояние, то в окр. среде и этой системе не происходит никаких изменений. Всякий процесс, не удовлетворяющий этим условиям является не обратимым.

7.3 принцип получения работы за счет тепловой энергии

Совершив цикл,рабочее вещество возвращается в исходное состояние. Поэтому изменение внутренней энергии за цикл равно нулю. Количество тепла, сообщаемого рабочему телу за цикл равно Q1-Q2 , где Q1 тепло получаемое рабочим телом при расширении, а Q2 тепло отдаваемое при сжатии. Работа А, совершаемая за цикл равна площади цикла. Таким образом. Выражение написанное для цикла имеет вид:

А= Q1-Q2

7.4 Циклические процессы

Термодинамический цикл - термодинамический процесс, в результате которого термодинамическая система после ряда изменений своего состояния возвращается в первоначальное состояние

7.5 Циклы идеальные и реальные

7.6Цикл Карно и его КПД

Цикл, состоящий из двух изотерм и двух адиабат. Одним из важных свойств цикла Карно является его обратимость: он может быть проведён как в прямом, так и в обратном направлении, при этом энтропия адиабатически изолированной (без теплообмена с окружающей средой) системы не меняется.. Для цикла Карно кпд определяется только температурами нагревателя и холодильника. Кроме того, КПД может составлять 100 % только в том случае, если температура холодильника равна абсолютному нулю

7.7Энтропия

Термодинами́ческая энтропи́я S, часто просто именуемая энтропия, в химии и термодинамике является функцией состояния термодинамической системы; её существование постулируется вторым началом термодинамики. изменение энтропии термодинамической системы при обратимом процессе как отношение изменения общего количества тепла ΔQ к величине абсолютной температуры T:

7.8Второе начало термодинамики и его статистический смысл Гипотиза Больцмана о связи энтропий и вероятности состояния.

С точки зрения статистической физики второе начало термодинамики имеет статистический характер: оно справедливо для наиболее вероятного поведения системы. Существование флуктуаций препятствует точному его выполнению, однако вероятность сколь-нибудь значительного нарушения крайне мала.

Клаузиус, рассматривая второе начало термодинамики, пришёл к выводу, что энтропия Вселенной как замкнутой системы стремится к максимуму, и в конце концов во Вселенной закончатся все макроскопические процессы. Это состояние Вселенной получило название «тепловой смерти». С другой стороны, Больцман высказал мнение, что нынешнее состояние Вселенной — это гигантская флуктуация, из чего следует, что большую часть времени Вселенная все равно пребывает в состоянии термодинамического равновесия («тепловой смерти»).

7.9 Флуктуации

Флуктуации — случайные отклонения от среднего значения физических величин, характеризующих систему из большого числа частиц; вызываются тепловым движением частиц или квантовомеханическими эффектами.

Примером термодинамических флуктуаций являются флуктуации плотности вещества в окрестностях критических точек, приводящих, в частности, к сильному рассеянию света веществом и потери прозрачности.

Флуктуации, вызванные квантовомеханическими эффектами присутствуют даже при температуре абсолютного нуля. Они принципиально неустранимы. Пример проявления квантовомеханических флуктуаций — эффект Казимира, а также силы Ван-дер-Ваальса.

8.1 Явление переноса в газах.

Явление переноса в газах – необратимый процесс, происходящий в том случае. Если отклонения от равновесия не велики. При нарушениях равновесия в телах возникают потоки тепла, либо массы, электрического заряда и т.п., сопутствующие этому явления называются явлениями переноса.

Различают три явления переноса: внутреннее трение (вязкость), теплопроводность и диффузию.

8.2 Диффузия Теплопроводность Внутреннее трение

Диффузия (лат. diffusio - распространение, растекание, рассеивание) — процесс переноса материи или энергии из области с высокой концентрацией в область с низкой концентрацией. Самым известным примером диффузии является перемешивание газов или жидкостей D=1/3 <V>*лямда (средняя скорость теплового движении и средняя длина пробега)

Теплопрово́дность — это способность вещества пропускать через свой объём тепловую энергию, а также количественная оценка этой способности (также называется коэффициентом теплопроводности).

Явление теплопроводности заключается в том, что кинетическая энергия атомов и молекул, которая определяет температуру тела, передаётся другому телу при их взаимодействии или передается из более нагретых областей тела к менее нагретым областям. X=BnCv

Вя́зкость(вну́треннее тре́ние) — одно из трёх явлений переноса, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой. Вязкость твёрдых тел обладает рядом специфических особенностей и рассматривается обычно отдельно.

Различают динамическую вязкость (единицы измерения: пуаз, Па*с) и кинематическую вязкость (единицы измерения: стокс, м²/с, внесистемная единица — градус Энглера). Кинематическая вязкость может быть получена как отношение динамической вязкости к плотности вещества и своим происхождением обязана классическим методам измерения вязкости, таким как измерение времени вытекания заданного объема через калиброванное отверстие под действием силы тяжести.

В кинетической теории газов коэффициент внутреннего трения вычисляется по формуле

где < u > — средняя скорость теплового движения молекул, λ − средняя длина свободного пробега n=1/3 ро*<v>*лямда

8.3Зависимость коэфицентов переноса от параметров.

Xобратно пропорционально корню из массы, зависит от числа степеней свободы молекулы, с понижнием давления уменьшается с повышением температуры растет пропорционально корню из тем-ры.

D коэф диффузии обратно пропорционален числу молекул в единице объема а следовательно и давлению. с повышением температуры растет пропорционально корню из тем-ры.

Вязкость не зависит от числа молекул в единице объема. А следовательно и от давления.Это справедливо пока лямда остается малой по сравнению с размерами зазора,как только это нарушается коэф. Вязкости начинает все больше зависить от давления уменьшаясь с его понижением. Растет с температурой пропорционально корню из Т

8.4 Связь между коэф. (вывод)

Закономерности всех явлении переноса сходны между собой.внешнее сходство их математических выражений обусловлено общьностью лежащего в основе явления теплопроводности, диффузии и внутреннего трения молекулярного механизма перемешивания молекул в процессе их хаотического движения и столкновения друг с другом. n=ро*D лямда/nCv =1

9.1Реальные газы

Реальный газ — газ, который не описывается уравнением состояния идеального газа Менделеева - Клапейрона.

Зависимости между его параметрами показывают, что молекулы в реальном газе взаимодействуют между собой и занимают определенный объем. Состояние реального газа часто на практике описывается обобщенным уравнением Менделеева - Клапейрона:

где p — давление; T — температура; Zr = Zr (p,T) — коэффициент сжимаемости газа; М — масса; R — газовая постоянная

9.2 Изотермы реальных газов

Для исследования поведения реального газа рассмотрим изотермы Ван-дер-вальса. Кривые зависимости р от Vm при заданны Т, определяемых уравнением Ван-дер-Вальса. Эти кривый для четырех различных температур имеют своеобразный характер. При высоких температурах изотерма реального газа отличается от изотермы идеального газа лишь некоторым искажением ее формы, оставаясь монотонно спадающей кривой. При некоторой температуре т критическая на изотерме имеется лишь ода точка перегиба, называемая критической точкой,в этой точке касательная к неи параллельна оси абсцисс.Следовательно в этой точке объем и давление называются также критическими. Состояние с критическими параметрами называется критическим состоянием. При нзких температурах изотермы имеют волнообразный участок, сначала опускаясь вниз, затем поднимаясь вверх и снова монотонно опускаясь.

9.3 уравнение Ван-дер-Вальса и его анализ

Уравнение состояния газа Ван-дер-Ваальса — уравнение, связывающее основные термодинамические величины в модели газа Ван-дер-Ваальса.

Хотя модель идеального газа хорошо описывает поведение реальных газов при низких давлениях и высоких температурах, в более экстремальных условиях её согласие с опытом гораздо хуже. В частности, это проявляется в том, что реальные газы могут быть переведены в жидкое и даже в твёрдое состояние, а идеальные — не могут.

Для более точного описания поведения реальных газов при низких температурах была создана модель газа Ван-дер-Ваальса, вводящая поправку на конечный диаметр молекулы и на притяжение молекул на больших расстояниях (напомним, что в идеальных газах частицы считаются точечными и никак не взаимодействуют на расстоянии).

Реальный газ - газ, в котором учитывается взаимодействие между молекулами.

Термическим уравненим состояния (или, часто, просто уравнением состояния) называется связь между давлением, объёмом и температурой.

Для одного моля газа Ван-дер-Ваальса оно имеет вид:

где:

P — давление,

V — объём,

T — абсолютная температура,

R — универсальная газовая постоянная,

Видно, что это уравнение фактически является уравнением состояния идеального газа с двумя поправками. Поправка a учитывает притяжение молекул, поправка b — объём занимаемый молекулами.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5166
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее