Главная » Все файлы » Просмотр файлов из архивов » Документы » Дифференциальное исчисление функции одной переменной

Дифференциальное исчисление функции одной переменной (Конспект), страница 2

2018-02-14СтудИзба

Описание файла

Файл "Дифференциальное исчисление функции одной переменной" внутри архива находится в папке "Конспект". Документ из архива "Конспект", который расположен в категории "". Всё это находится в предмете "математический анализ" из 1 семестр, которые можно найти в файловом архиве МПУ. Не смотря на прямую связь этого архива с МПУ, его также можно найти и в других разделах. Архив можно найти в разделе "лекции и семинары", в предмете "математический анализ (высшая математика)" в общих файлах.

Онлайн просмотр документа "Дифференциальное исчисление функции одной переменной"

Текст 2 страницы из документа "Дифференциальное исчисление функции одной переменной"

Найдем f (x). Для этого прологарифмируем обе части равенства:

lny=lnxtgx по свойству логарифма получаем lny=tgxlnx. Продифференцируем обе части:

;

Тогда dy= dx.

Тема 4.11. Производная функции, заданной параметрически.

Пусть даны два уравнения

, (4.6)

где t принимает значения, содержащиеся на отрезке [Т12]. Каждому значению t соответствуют значения х и у (функции f и g предполагаем однозначными). Если рассматривать значения х и у как координаты точки на координатной плоскости Оху, то каждому значению t будет соответствовать определенная точка плоскости. Когда t изменяется от Т1 до Т2, то точка на плоскости описывает некоторую кривую. Уравнения (4.6) называются параметрическими уравнениями этой кривой, t- параметр, а способ задания кривой уравнениями (4.6) параметрическим. Параметрическое задание кривых широко распространено в механике.

Пусть функция задана параметрическими уравнениями (4.6).

Тогда производные у от х можно найти по формулам:

(4.7)

Пример . Найти производную функции, заданной параметрически

=

Тема 4.12. Производные неявной функции.

Если у есть неявная функция от х, т.е. задана уравнением F(x,y)=0 не разрешенным относительно у, то для нахождения производной нужно продифференцировать по х обе части равенства, помня, что у есть функция от х и затем разрешить полученное равенство относительно у.

Пример. Найти производную неявной функции х22-4х-10у+4=0.

Дифференцируя по х, получаем 2х+2уу-4-10у=0. Выражаем у, имеем:

.

Задачи для самопроверки.

1. Найти производную функции

А) y=tgx-10x ; Б) y=ctgxarccosx ; В) ;

  1. Найти производную сложной функции

А) y= ; Б) y= ; В)y= ; Г) y=(sinx+3)4 ;

Д) y= .

  1. Найти производную показательно степенной функции:

А) y= ; Б) y=(sinx)x

Ответы. 1 А) y= ; 1Б) y= ;

1 В) y= = ;

2А) y= ; 2Б) y= ;

2В) y= = ;

2Г) y=4(sinx+3)3cosx ; 2Д) y= .

3А) y= ; 3Б) y= (sinx)x

4. Найти производную функции, заданной параметрически:

А) Б)

5. Найти производную функции, заданной неявно:

А) х22=4; Б) х3+lny-x2ey=0

Ответы. 4А) ; 4Б) yx=tgt; 5А) у=-х/у; 5Б) у= .

Тема 4.13 Правило Лопиталя.

В задачах к темам 4.1-4.6 были разъяснены элементарные способы нахождения предела функции в тех случаях, когда аргумент неограниченно возрастает или стремится к значению, которое не входит в область определения функции. Кроме этих элементарных способов, весьма эффективным средством для нахождения предела в указанных особых случаях является следующее

Правило Лопиталя: Предел отношения двух бесконечно малых или бесконечно больших величин равен пределу отношения их производных, если он существует или равен бесконечности

или =

Если же отношение производных вновь будет представлять случай или , то можно снова и снова применять правило Лопиталя до получения результата.

= или =

Пример. Найти предел функции с помощью правила Лопиталя Так как и числитель и знаменатель дроби стремятся к 0, то можно применить правило Лопиталя:

=

Пример. Найти предел функции с помощью правила Лопиталя

Так как и числитель и знаменатель дроби стремятся к 0, то можно применить правило Лопиталя:

=

Числитель и знаменатель дроби вновь стремятся к 0, применяем правило Лопиталя еще раз:

=

Пример. Найти предел функции с помощью правила Лопиталя .

=

Пример. Найти предел функции с помощью правила Лопиталя

= =

Если функция представляет произведение бесконечно малой величины на бесконечно большую или разность двух бесконечно больших величин, то путем преобразования этих функции сводятся к случаям или

Пример. Найти предел функции с помощью правила Лопиталя

=

Пример. Найти предел функции с помощью правила Лопиталя

= = =

Задачи для самопроверки.

1) ; 2) ; 3) ;

4) ;

5) .

Ответы.

1) 2; 2) 6; 3) 7/6; 4) 3/5; 5) 0.

Тема 4.14. Формула Лагранжа.

Если функция непрерывна на замкнутом промежутке [a, b] и дифференцируема на открытом промежутке (a, b), то можно найти такую точку c, принадлежащую промежутку (a, b), для которой справедливо равенство:

f(b) - f(a) = f(c)(b - a). (1)

Эта формула называется формулой конечных приращений Лагранжа. Проведем наглядное обоснование этой формулы. Возьмем на графике функции f(x) точки A(a;f(a)) и B(b;f(b)). Проведем через эти точки прямую AB. Проведем также прямую L, параллельную прямой AB, так, чтобы она не пересекала график функции f(x) на промежутке (a, b). Сохраняя параллельность L и AB, будем "надвигать" прямую L на график f(x) до тех пор, пока прямая L не коснется графика f(x) в некоторой точке c промежутка (a, b). Геометрическую точку касания обозначим буквой M, а через MN обозначим касательную к графику f(x), параллельную прямой AB. Очевидно, угловые коэффициенты прямых MN и AB (то есть тангенсы углов наклона прямых к оси абсцисс) равны. Угловой коэффициент прямой MN равен f(c), а угловой коэффициент прямой AB равен (f(b) f(b))/(b-a), и справедлива формула:

.

Отсюда сразу получается формула (1). На приведенном рисунке видно, что могут существовать другие точки, принадлежащие промежутку (a, b), в которых касательные к графику функции f(x) параллельны прямой MN. Производную функции f(x), вычисленную в любой из этих точек, можно подставить в правую часть формулы (1) вместо множителя .

Сформулируем теорему о монотонности функции. Если f(x) > 0 на промежутке (a;b), то на (a;b) функция f(x) возрастает. Если f(x) < 0 на промежутке (a;b), то на (a;b) функция f(x) убывает.

Докажем эту теорему. Пусть t1 и t2 — любые числа из промежутка (a;b), причем t2>t1. Тогда по теореме Лагранжа можно указать такое число c из промежутка (t1;t2), для которого справедливо равенство f(t2) – f(t1) = f(c)(t2 – t1). Если f(x) > 0 для всех x из промежутка (a;b), то f(c) > 0, и из условия t2 > t1 следует, что f(t2) – f(t1) > 0. Таким образом, возрастание функции f(x) на промежутке (a;b) доказано. Аналогично доказывается вторая часть теоремы.

Необходимые и достаточные условия экстремума функции

Точка x0 называется точкой минимума функции f(x), если можно найти такую окрестность этой точки, что для любой точки x из этой окрестности выполняется условие:

f(x) > f(x0).

Точка x0 называется точкой максимума функции f(x), если можно найти такую окрестность этой точки, что для любой точки x из этой окрестности выполняется условие:

f(x) < f(x0).

Точки максимума и минимума функции называются точками экстремума.

Сформулируем теорему о необходимом условии экстремума функции: если в точке экстремума функция f(x) имеет производную, то производная равна нулю.

Отсюда следует, что точки экстремума функции следует искать среди тех точек её области определения, где производная функции равна нулю или не существует.

Если f (x0) = 0, это еще не значит, что в точке x0 есть экстремум. Примером может служить функция y=x3. В точке x=0 её производная равна нулю, но экстремума функция не имеет. График функции изображен на рисунке 3.

Точка, в которой производная равна нулю, называется стационарной.

Точки области определения функции, в которых производная либо равна нулю, либо не существует, называются критическими.

Как было показано выше, с помощью необходимого условия нельзя определить, является ли данная точка точкой экстремума, тем более указать, какой экстремум реализуется – максимум или минимум. Для того, чтобы отве­тить на эти вопросы, сформулируем и докажем теорему, которая называется достаточным условием экстремума.

Пусть функция f(x) непрерывна в точке x0. Тогда:

1) если f(x) < 0 на (a;x0) и f(x) > 0 на (x0;b), то точка x0 точка минимума функции f(x);

2) если f(x) > 0 на (a;x0) и f(x) < 0 на (x0;b), то точка x0точка максимума функции f(x);

Докажем первое утверждение теоремы.

Так как f(x) < 0 на (a;x0) и f(x) непрерывна в точке x0, то f(x) убывает на (a;x0], и для любого x(a;x0) выполняется условие f(x)>f(x0).

Так как f(x) > 0 на (x0;b) и f(x) непрерывна в точке x0, то f(x) возрастает на (x0;b], и для любого x(x0;b) выполняется условие f(x)>f(x0).

В результате получается, что при любом xx0 из (a;b) выполняется нера­венство f(x)>f(x0), то есть точка x0 – точка минимума f(x).

Второе утверждение теоремы доказывается аналогично.

Выпуклость и вогнутость функции

Пусть функция f(x) имеет производную в каждой точке промежутка (a;b). Если на промежутке (a;b) график функции f(x) расположен выше любой своей касательной, проведенной в точке этого промежутка, то функция называется вогнутой на этом промежутке (иногда говорят "выпуклой вниз").

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
437
Средний доход
с одного платного файла
Обучение Подробнее