Главная » Все файлы » Просмотр файлов из архивов » Документы » Автоматизация шлифовального процесса путем разработки автоматической системы управления преднатягом

Автоматизация шлифовального процесса путем разработки автоматической системы управления преднатягом, страница 8

2018-01-12СтудИзба

Описание файла

Файл "Автоматизация шлифовального процесса путем разработки автоматической системы управления преднатягом" внутри архива находится в папке "Автоматизация шлифовального процесса путем разработки автоматической системы управления преднатягом". Документ из архива "Автоматизация шлифовального процесса путем разработки автоматической системы управления преднатягом", который расположен в категории "". Всё это находится в предмете "дипломы и вкр" из 12 семестр (4 семестр магистратуры), которые можно найти в файловом архиве РТУ МИРЭА. Не смотря на прямую связь этого архива с РТУ МИРЭА, его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "диплом" в общих файлах.

Онлайн просмотр документа "Автоматизация шлифовального процесса путем разработки автоматической системы управления преднатягом"

Текст 8 страницы из документа "Автоматизация шлифовального процесса путем разработки автоматической системы управления преднатягом"

После указанных преобразований получают систему дифференциальных уравнений шестого порядка с постоянными коэффициентами, что значительно упрощает описание АД и делает возможным использование этой системы для исследования электромеханических процессов, протекающих в АД. Дальнейшее преобразование полученной системы уравнений сводится к переводу векторов, входящих в уравнение, в различные системы координат (в зависимости от цели решаемой задачи).

При математическом описании АД принят ряд допущений, соответствующих идеализированному представлению АД:

  • фазные обмотки симметричны, одинаковы, воздушный зазор по все окружности ротора одинаков;

  • не учитываются потери в стали, а также высшие гармоники магнитодвижущей силы и рабочего потока;

  • параметры АД постоянны и не зависят от токов в обмотках АД;

Цель проекта сводится к разработке автоматической системы регулирования частоты тока, поступающего на обмотки статора асинхронного электропривода и напряжения питания на базе автономного мостового инвертора тока с трехфазным одно-обмоточным двигателем. При этом автоматическое изменение электрических параметров регулирует механические силы, действующие на привод.

3.3Анализ существующих средств автоматизации

Известные в настоящее время технические устройства для частотного управления асинхронным электроприводом в полной мере не отвечают требованиям, предъявляемым к мощному высоковольтному электроприводу и им присущи следующие недостатки:

  • ограниченная низкоскоростными электроприводами область применения, необходимость изготовления специальной машины или переделка серийной, применение специальных устройств для механического сочленения валов, невозможность применения в запыленных и агрессивных средах, что обусловлено наличием датчиков на валу и внутри машины;

  • высокая сложность технической реализации, обусловленная наличием сложных технических устройств: координатного преобразования, векторных фильтров, фазовращателей, функциональных преобразователей, блоков коррекции мгновенного значения частоты;

  • наличие большого числа датчиков, осуществляющих высоковольтную гальваническую развязку;

  • невысокая надежность, что обусловлено наличием датчиков на валу и внутри машины, высокой сложностью технической реализации блоков АСР, датчиков, осуществляющих высоковольтную гальваническую развязку.

3.4Обоснование системы автоматического управления

При частотном управлении асинхронными двигателями наиболее часто используются следующие законы: поддержание постоянства потокосцепления статора (Y1=const), поддержание постоянства главного потока машины (Y0=const), поддержание постоянства потокосцепления ротора (Y2=const), и регулирование величины потокосцепления в зависимости от величины нагрузочного момента (Y1, Y0, Y2) =f(M)).

Первый закон реализуется при поддержании постоянного отношения ЭДС статора к угловой частоте поля. Основным недостатком такого закона является пониженная перегрузочная способность двигателя при работе на высоких частотах, что обусловлено увеличением индуктивного сопротивления статора и, следовательно, снижением потокосцепления в воздушном зазоре между статором и ротором при увеличении нагрузки.

Поддержание постоянства главного потока повышает перегрузочную способность двигателя, но усложняет аппаратную реализацию системы управления и требует либо изменений конструкции машины, либо наличия специальных датчиков.

При поддержании постоянного потокосцепления ротора, момент двигателя не имеет максимума, однако при увеличении нагрузки увеличивается главный магнитный поток, приводящий к насыщению магнитных цепей и, следовательно, к невозможности поддержания постоянства потокосцепления ротора.

Общим недостатком законов с поддержанием постоянства потокосцепления являются: низкая надежность, обусловленная наличием датчиков, встраиваемых в двигатель, и потери в стали при работе двигателя с нагрузочным моментом меньше номинального. Эти потери вызваны необходимостью поддержания постоянного номинального потокосцепления в различных режимах работы.

Существенно повысить КПД двигателя можно путем регулирования магнитного потока статора (ротора) в зависимости от величины нагрузочного момента (скольжения). Недостатками такого управления являются низкие динамические характеристики привода, обусловленные большой величиной постоянной времени ротора, из-за чего магнитный поток машины восстанавливается с некоторой задержкой и сложность технической реализации системы управления.

В то же время существует ряд приводов таких механизмов как насосы, компрессоры, конвейеры и т. д., которые занимают промежуточное положение между динамичными и низко динамичными, и для которых существующие системы не в полной мере удовлетворяют предъявляемым к этим приводам требованиям. Высоко динамичные привода имеют сложную систему управления и повышенные энергетические потери при недогрузе двигателей, а низко динамичные привода не всегда способны отработать быстрые изменения статического момента.

Как уже было отмечено, высокими энергетическими характеристиками обладают системы с регулированием магнитного потока в функции нагрузки. Увеличить их динамические характеристики можно путем форсировки статорного напряжения (тока) во время переходных процессов и частых формирований управляющих воздействий. Получить высокую надежность можно за счет применения упрощенной системы регулирования, отказа от встроенных в двигатель и механически связанных с ротором датчиков.

3.5Схема включения, статические характеристики и режимы работы асинхронного двигателя

Трехфазный АД имеет обмотку статора, под­ключаемую к трехфазной сети переменного тока с напряжением U и ча­стотой f, и обмотку ро­тора, которая может быть выполнена по двум вариантам (рис.3.1).


Рис.3.1 . Схемы включения АД с фазным ротором (а)

и с короткозамкнутым ротором (б)

Первый вариант пред­усматривает выполнение обычной трехфазной об­мотки из проводников с выводами на три кон­тактных кольца. Такая конструкция соответству­ет АД с фазным ротором и позволяет включать в роторную цепь различные электротехнические элементы, например резисторы для регулирования скорости, тока и. мо­мента ЭП, и создавать с той же целью . Специальные схемы включения АД. Другой вид обмотки получают заливкой алюминия в пазы ротора, в результате чего образуется конструкция, известная под назва­нием “беличья клетка”. Схема АД с такой обмоткой, не имеющей выводов и получившей название короткозамкнутой.

3.5.1Регулирование параметров электропривода с асинхронным двигателем изменением напряжения

Изменение величины напряжения, подводимого к статору АД, позволяет осуществлять в статических и динамических режимах регулирование его мощности с помощью относительно простых схем управления.

Д ля регулирования координат короткозамкнутого АД между сетью переменного тока со стандартным напряжением U 1ном и статором (рис.2 , а) двигателя 2 включен регулятор I напряжения, выходное напряжение которого U 1рег изменяется с помощью внешнего сигнала управления U. Из­меняя величину этого сигнала, можно регулировать напряжение на статоре двигателя U 1рег в пределах от величины сетевого напряжения U 1ном и практичес­ки до нуля. При, этом частота напряжения на двигателе не изменяется и равна стандартной (50 Гц).

Рис.3.2 Схема регулирования координат АД изменением напряжения на статоре (а) и механические характеристики(б)

Регулирование напряжения на статоре не приводит к изменению скорости холостого хода w0=2f1 /p и не влияет на критическое скольжение sk, но существенно изменяет величину критического (мак­симального) момента Mk. Как следует из схемы, снижение напряжения приводит к резкому уменьше­нию Мк, пропорционально квадрату напряжения.

В результате при U 1рег =var искусственные характе­ристики (рис.3.2,б) оказываются малопригодными для целей регулирования скорости, так как по мере уменьшения напряжения резко снижаются критический момент АД и тем самым его перегрузочная способ­ность, а диапазон регулирования скорости очень мал. Характеристики 3—6 построены при напряжениях 1;0,8; 0,6 и 0,4 от U 1ном.

Д ля регулирования напряжения на статоре АД могут использоваться различные электротехнические устройства—автотрансформаторы, магнитные усили­тели и тиристорные регуляторы напряжения (ТРН). Последние получили в настоящее время наибольшее распространение из-за высокого КПД, простоты в обслуживании, легкости автоматизации работы ЭП. Рас­смотрим принцип действия ТРН и основанную на его использовании систему ЭП “тиристорный регулятор напряжения — асинхронный двигатель” (ТРН — АД).

Рис. 3.3. Схема (а) я кривые напряжения (б) однофазного ТРН

На рис. 3.3, а показана схема регулирования напряжения на однофазной нагрузке переменного тока Zy. Силовая часть однофазного ТРН образована двумя тиристорами VS1 и VS2, включенными по встречно-параллельной схеме, кото­рая обеспечивает протекание тока в нагрузке в оба полу периода напряжения сети U1. Тиристоры получа­ют импульсы управления U, от СИФУ, которая обеспечивает их сдвиг на угол управления  в фун­кции внешнего сигнала управления Uy.

Осуществляя подачу импульсов управления на тиристоры с некоторой задержкой относительно предельного режима (угол управления О), то к нагрузке будет прикладывать­ся часть напряжения сети (рис. 3.3,6). Изменяя угол управления а от нуля до , можно регулировать напряжение на нагрузке от полного напряжения сети до нуля. На основе однофазной схемы со­здаются трехфазное схемы для регулирования на­пряжения на статоре АД. Такая схема, состоящая из шести тиристоров VS1 — VS6, доказана на рис. 3.4


Рис.3.4 Схема трехфазного тиристорного регулятора-напряжения

Форма напряжения на нагрузке является несинусо­идальной. Несинусоидальное напряжение можно представить как совокупность нескольких синусо­идальных напряжений—гармоник, каждая из кото­рых изменяется с определенной частотой. Частота изменения первой из них (основной гармоники) равна частоте питающего напряжения, а частота других гармоник больше, чем первой. Обычно 1-я гармоника имеет наибольшую амплитуду, и по ней ведутся все основные расчеты.

3.5.2Регулирование скорости асинхронного двигателя изменением частоты

Данный способ, называемый частотным, является одним из наиболее перспективных, и широко внедря­ется в настоящее время. Принцип его заключается в том, что, изменяя частоту fi питающего АД напряжения, можно в соответствии с выражением 0 == 2f1/p изменять его скорость 0 получая раз­личные искусственные характеристики. Этот способ обеспечивает плавное регулирование скорости в ши­роком диапазоне, а получаемые характеристики об­ладают высокой жесткостью. Для лучшего использования АД и получения высоких энергетических показателей его работы — коэффициентов мощности, полезного действия, пе­регрузочной способности- одновременно с частотой необходимо изменять и подводимое к АД напряже­ние. Закон изменения напряжения при этом зависит от характера момента нагрузки Мc.

При постоянном моменте нагрузки Mc =const напряжение на статоре должно регулироваться про­порционально его частоте: U/f=const.

Для вентиляторного характера момента нагрузки это соотношение имеет вид: U/f2=const.

Таким образов, при реализации частотного способа регулирования скорости АД должен быть использован преобразователь частоты, который по­зволяет также регулировать и напряжение на статоре АД.

3.6Схема включения АД и его характеристики

Необ­ходимым элементом ЭП является преобразователь частоты 1и напряжения, на вход которого подается стан­дартное напряжение сети U ( 380 В.) промышленной частоты f = 50 Гц, а с его выхода снимается переменное напряжение U1per регулируемой частоты f1рег (рис.3.5 , а)

Рис.3. 5. Схема асинхронного ЭП (а) и механические характеристики АД (6) при частотном регулировании

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
426
Средний доход
с одного платного файла
Обучение Подробнее