матан 1 модуль (Вся теория для 1 курса в ворде !!)

2017-07-19СтудИзба

Описание файла

Документ из архива "Вся теория для 1 курса в ворде !!", который расположен в категории "". Всё это находится в предмете "математический анализ" из 1 семестр, которые можно найти в файловом архиве МГТУ им. Н.Э.Баумана. Не смотря на прямую связь этого архива с МГТУ им. Н.Э.Баумана, его также можно найти и в других разделах. Архив можно найти в разделе "к экзамену/зачёту", в предмете "математический анализ" в общих файлах.

Онлайн просмотр документа "матан 1 модуль"

Текст из документа "матан 1 модуль"

МОДУЛЬ 1: Элементарные функции и пределы

  1. вопрос 1Числовая последовательность. Предел последовательности; сходящиеся и расходящиеся последовательности. Теорема о единственности предела сходящийся последовательности(с доказательством).

Последовательностью называется числовая функция, определенная на множестве натуральных чисел.

Число A называется пределом числовой последовательности {an}, если для любого, даже сколь угодно малого положительного числа ε > 0, найдется такое число N (зависящее от ε), что для всех членов последовательности с номерами n > N верно неравенство: |an - A|< E.

Последовательность, которая имеет предел, называется сходящейся, в обратном случае последовательность расходится.

Теорема о единственности предела сходящийся последовательности: Последовательность не может иметь больше одного предела. Доказательство. Это следует из того, что последовательность не

может одновременно приближаться к двум разным числам одновременно.

Формально, выберем ε значительно меньше разницы между числами A и B.

Тогда очевидно, что мы не сможем указать такого номера N, начиная с

которого одновременно будут выполнены два условия: |an - A|< E и |an - В|< E

Этими рассуждениями теорема доказана.

  1. вопрос 2 Ограниченная числовая последовательность. Теорема об ограниченности сходящийся числовой последовательности. Признак Вейерштрасса сходимости монотонной последовательности (формулировка).

Последовательность ограничена, если найдется такое положительное число, для которого все члены последовательности по модулю окажутся не больше этого числа. {an}- ограничена, если существует М>0: |an|<= M любой n принадл. N

Теорема Вейерштрасса. (Основная теорема теории последовательностей). Если последовательность {an} является нестрого возрастающей (нестрого убывающей) и {an} ограничена сверху (снизу), то {an} является сходящейся. Данную теорему можно сформулировать немного иначе - Любая монотонная и ограниченная последовательность {an} имеет предел.





  1. вопрос 3 Определения по Коши конечного и бесконечного предела функции в точке и на бесконечности. Односторонние пределы функции. Определение предела функции по Гейне. Теорема о связи двустороннего предела функции в точке с односторонними пределами (с доказательством).

Предел функции в бесконечности:  Число A называется пределом функции y=f(x) при x стремящемся к бесконечности, если для любого, даже сколь угодно малого положительного ε, найдется такое число M(зависящее от ε), что для всех x таких, что |x|>M, выполнено неравенство: |f(x) - A|< ε.

Предел функции в точке:Число A называется пределом функции y = f(x) при x → a, если для любого, даже сколь угодно малого положительного для любого, даже сколь угодно малого ε > 0, найдется такое число δ > 0 (зависящее от ε), что для всех x из δ-окрестности точки a, выполнено неравенство: |f(x) - A|< ε.

Односторонние пределы: Пределом функции f(x) в точке x=a слева называется предел, вычисляемый в предположении, что x → a, оставаясь все время меньше значения a. Аналогично, пределом справа называется предел функции f(x) при x → a, при том, что x > a. Односторонние пределы обозначаются так:

Односторонним пределом функции называется предел справа или предел слева.

По Гейне: Число b называется пределом функции f(x) в точке a, если для любой последовательности {xn} прин D(f), которая сходится к , соответствующая последовательность значений функции {f(xn)} сходится к b.

  1. вопрос 4 Теорема о единственности предела функции(с доказательством).

Теорема: Последовательность точек расширенной числовой прямой R может иметь на этой прямой только один предел.

Допустим противное. Пусть существует такая последовательность xn прин. R , n = 1, 2, ..., что = a  и = b, причем a не равно b, a прин. R , b прин. R . Возьмем какие-либо непересекающиеся окрестности U = U(а) и V = V(b) точек а и b : U  V = . Согласно определению предела вне окрестности U точки а, в частности в окрестности Vточки b, содержится лишь конечное число членов последовательности {xn}. Однако точка b также является ее пределом, и потому в ее окрестности V должны находиться все члены последовательности {xn}, начиная с некоторого номера, а следовательно, бесконечно много ее членов. Получилось противоречие. 

  1. вопрос 5 Ограниченные и локально ограниченные функции. Теорема о локальной ограниченности функции, имеющей конечный предел( с доказательством).

Локально ограниченная -- это значит ограниченная на каком-то множестве аргументов, то есть можно указать такие значения a и b, что a <= f(x) <= b для любого x из этого множества.

Теорема (локальная ограниченность функции, имеющий предел).Если предел f(x) при x → x0 равняется А, то найдется окрестность x0 , во всех точках которых функция  f(x) ограниченна. Положим ε = 1. Из условия теоремы следует существование окрестности: . Следовательно:

Отсюда для указанных х     что и означает ограниченность f(x) в .

  1. вопрос 6 Бесконечно малые функции. Теорема о связи функции, ее предела и бесконечно малой ( с доказательством).

Функция y=f(x) называется бесконечно малой при x → x0 если , По определению предела функции это равенство означает, что для любого числа ε > 0 найдется число б = б(ε) > 0 , такое, что для всех x, удовлетворяющих неравенству 0 <|x-x0|<б, выполняется неравенство |f(x)| < ε.

Запишем это определение, используя логическую символику:

Теорема: Для того, чтобы функция , определённая в имела конечный предел при x → a, необходимо и достаточно чтобы эту функцию можно было представить в виде суммы предела и б.м.ф. при x → a ( , где - б.м.ф. при x → a).

Доказательство: I Необходимость:

Дано: Доказать: , где - б.м.ф. при x → a.

Пусть по определению б.м.ф - б.м.ф. при x → a.

II Достаточность: Дано: , где - б.м.ф.

при x → a. Доказать:

  1. вопрос 7 Теорема о сумме конечного числа бесконечно малых функций ( с доказательством). Теорема о произведении бесконечно малой на ограниченную (с доказательством).

Теорема (сумма бесконечно малых величин). Если функции а(х) и δ(х) являются бесконечно малыми, то их сумма а(х) + δ(х) -бесконечно малая. Доказательство. Пусть ε - произвольное положительное число. Так

как функции а(х) и δ(х) бесконечно малые, то найдутся такие числа δ1 и δ2,

что при 0 < |x-a|< δ1 и 0 < |x-a|< δ2 имеют место неравенства:

Обозначим через δ наименьшее из двух чисел δ1 и δ2. Тогда при 0 < |x-a|< δ будет выполнено: Этим доказано, что для любого ε > 0 существует такое число δ > 0, что при 0 < |x-a| < δ выполнено неравенство: |а(х) + δ(х)| < ε, сумма бесконечно малых есть бесконечно малая. Следствием теоремы является ее распространение на случай алгебраической суммы любого конечного числа бесконечно малых.

Теорема (произведение бесконечно малой величины на ограниченную величину). Произведение бесконечно малой величины на ограниченную величину есть бесконечно малая величина. Доказательство. Пусть f(x) – ограниченная при x → a функция, а а(х) бесконечно малая. Тогда существует такое число M > 0, что для всех x, достаточно близких к a. Для ε > 0 существует δ > 0, что при условии 0 < |x-a| < δ одновременно выполняются неравенства: Составим произведение: Этим доказано, что произведение бесконечно малой на ограниченную величину есть бесконечно малая.

  1. вопрос 8 Бесконечно большие функции. Теорема о связи бесконечно малой и бесконечно большой функции ( с доказательством).

Функция y = f(x) называется бесконечно большой величиной при x → a (или при x → ∞), если для любого, даже сколь угодно большого числа M > 0 найдется δ (зависящее от M), что для всех x таких, что 0 < | x – a |< δ,

выполнено неравенство: | f (x)| > M. Бесконечно большая величина больше любого наперед взятого большого числа. Бесконечно большой величиной называется переменная величина, абсолютное значение которой неограниченно возрастает.

Теорема (связь между бесконечно малыми и бесконечно большими величинами).

(1) Если α (x) – бесконечно малая, то 1/ α (x) бесконечно большая.

  1. Если β (x) – бесконечно большая, то 1/ β (x) бесконечно малая.

Доказательство. (1) Выберем M > 0 и обозначим 1/ M = ε. Так как α (x) бесконечно малая, то числу ε > 0 соответствует δ > 0 такое, что при 0 < |x-a| < δ выполняется неравенство: Следовательно, Эта величина является бесконечно большой. (2) Выберем ε > 0 и обозначим 1/ε = М. Так как β(х) бесконечно большая, то числу M соответствует δ > 0, такое, что при 0 < |x-a| < δ выполняется неравенство: Следовательно, Эта величина является бесконечно большой.

  1. вопрос 9 Теорема о пределе суммы, произведения и частного функции (доказательство для функции и последовательности).

1)Предел суммы двух функций равен сумме их пределов: Доказательство: Пусть , . Тогда по теореме о связи функции, её предела и бесконечно малой функции можно записать: и . Следовательно, , где - бесконечно малая функция (по свойству бесконечно малых функций). Тогда по теореме о связи функции, её предела и бесконечно малой функции можно записать , или .

2)Предел произведения двух функций равен произведению их пределов: .

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5137
Авторов
на СтудИзбе
441
Средний доход
с одного платного файла
Обучение Подробнее