Otveti (Ответы на теорию и задачи с экзамена (2005-2006))

2017-07-08СтудИзба

Описание файла

Файл "Otveti" внутри архива находится в папке "Ответы на теорию и задачи с экзамена (2005-2006)". Документ из архива "Ответы на теорию и задачи с экзамена (2005-2006)", который расположен в категории "". Всё это находится в предмете "физика" из 1 семестр, которые можно найти в файловом архиве РТУ МИРЭА. Не смотря на прямую связь этого архива с РТУ МИРЭА, его также можно найти и в других разделах. Архив можно найти в разделе "к экзамену/зачёту", в предмете "физика" в общих файлах.

Онлайн просмотр документа "Otveti"

Текст из документа "Otveti"

Вопрос N1. Кинематика материальной точки. Радиус-вектор скорость и ускорение. Нормальная и тангенциальная составляющая ускорения. Кинематика вращательного движения. Угловые скорость и ускорение. Связь линейных и угловых характеристик движения.

Ответ.

Материальная точка - это тело, размерами которого можно пренебречь в условиях данной задачи. Вектор - это величина, характеризующаяся численным значением и направлением, и складывающаяся по правилу параллелограмма. Радиус-вектором некоторой точки называется вектор, проводящийся из начала координат в данную точку. r=xi+yj+zk. Ускорение - это быстрота изменения скорости. a=dv/dt в векторном виде, в координатах ax=dvx/dt, a=(ax2+ay2+az2). Тангенциальное или касательное ускорение a характеризует изменение скорости по величине, а нормальное или центростремительное an по направлению. a= a+ an;a=( a+ an);a=dv/dt;an=v2/R. Средняя угловая скорость <>=/t, мгновенная =d/dt. Для равномерного вращательного движения =0+t.Угловое ускорение =d/dt. Для равнопеременного вращательного движения =0+t, =0+t+t2. Связь угловых характеристик с линейными. Путь пройденный точкой по окружности S=R. Скорость точки v=R. Ускорение точки a=R, an=2R. При вращательном движении все точки тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения.

Вопрос N2. Инерциальные системы отсчёта. Понятия силы и инертной массы. Законы динамики. Силы в природе. Фундаментальные взаимодействия. Свойства сил упругости и тяготения. Свойства сил терния.

Ответ.

Инерциальной системой отсчёта называется система, в которой выполняется первый закон Ньютона. Сила - векторная величина, являющаяся мерой механического воздействия на тело со стороны других сил или полей. Сила считается заданной, если указано её численное значение, направление и точка приложение. Инертная масса - это масса, которая фигурирует во втором законе Ньютона и характеризует инертные свойства тела. В динамике есть три основных закона. Это первый, второй и третий закон Ньютона. Первый закон Ньютона. Всякое тело в инерциальной системе отсчёта, находящееся в состоянии покоя или равномерного движения и прямолинейного движения, пока воздействие со стороны других тел не заставит его изменить это состояние. Второй закон Ньютона. Скорость изменения импульса тела равна действующей на тело силе, dp/dt=F. Третий закон Ньютона. Силы, с которой действуют друг на друга тела равны по модулю и противоположны по направлению, F12=-F21. Закон сохранения импульса. Импульс замкнутой системы остаётся постоянным. Для замкнутой системы F=0,dp/dt=0. Сила упругости. Тело деформируется, ио есть изменяет свою форму и размер под действием приложенных к нему сил. Если после прекращения действия сил, тело принимает первоначальные размер и форму, то оно возвращает свою первоначальную форму и размер вследствие действия силы упругости. Сила упругости вычисляется по закону Гука, F=-kx,где k - жёсткость пружины. Сила тяготения. Под действием силы притяжения к земли все тела падают с одинаковым относительно земли ускорением g. Это означает, что в системе отсчёта связанной с Землёй на всякое тело массой m действует сила P=mg. Сила тяжести приложена в ту же сторону, что и g. Сила трения. A. Сухое трение. Fтр=kN, где k - это коэффициент трения. Сила, направленная противоположно движению. Б. Вязкое трение. F=-kv при небольших скоростях. Фундаментальные взаимодействия - это гравитационные и электромагнитные взаимодействия. Упругие взаимодействия к фундаментальным не относятся.

Вопрос N3. Центр инерции. Закон сохранения системы материальных точек.

Ответ.

Центром масс или центром инерции называется точка C, положение которой радиус-вектором rc определяется следующим образом. rc=(m1r1+…+mnrn)/(m1+…+mn)=(miri)/ (mi)= =(miri)/m, здесь mi - масса i-й частицы, ri - радиус-вектор, определяющий положение этой частицы, m - масса системы. Второй закон Ньютона. Скорость изменения импульса тела равна действующей на него силе. F=dp/dt. При отсутствии внешних сил, то есть dp/dt=0, для замкнутой системы p=const. Это основа закона закона сохранения импульса. Импульс замкнутой системы материальных точек остаётся постоянным. pi=const. Импульс остаётся постоянным и для незамкнутой системы, при условие, что работа внешних сил равна 0.

Вопрос N4. Работа переменной силы. Кинетическая энергия и её связь с работой внешних и внутренних сил.

Ответ.

Тела, образующие механическую системы могут взаимодействовать как между собой, так и с телами не принадлежащими данной системе. В соответствии с этим силы, действующие на тела системы подразделяются на внутренние и внешние. Внутренние силы - это силы, с которыми на данное тело воздействуют остальные тела системы. Внешние силы - это силы, обусловленные воздействием тел не принадлежащих данной системы. В случае, если внешние силы отсутствуют система называется замкнутой. Кинетическая энергия. Если система замкнута, то есть F=0, то d(mv2/2)=0, а сама величина T=mv2/2 остаётся постоянной. Кинетическая энергия связана с работой внешних и внутренних сил. Если на частиц действует сила F, кинетическая энергия не остаётся постоянной. В этом случае, согласно утверждению d(mv2/2)=Fds, приращение кинетической энергии за время dt равно скалярному произведению Fds (ds - перемещение частицы за время dt). Величина dA= Fds называется работой силы F на пути ds (ds - это модуль перемещения). Работа результирующей всех сил, действующих на частицу идёт на приращение кинетической энергии частицы, A=t2-t1, следовательно энергия имеет такую же размерность, как и работа, в соответствии энергия измеряется в тех же единицах, что и работа.

Вопрос N5.Понятие поля. Консервативные силы и потенциальные поля. Потенциальная энергия материальной точки во внешнем силовом поле. Связь силы и потенциальной энергии. Поле центральных сил. Потенциальная энергия системы. Потенциальная энергия упругой деформации. Потенциальная энергия в поле тяготения.

Ответ.

Поле сил - это поле в котором частица в каждой точке пространства подвержена воздействию других тел. Для стационарного поля может оказаться что работа совершаемая над частицей силами поля зависит лишь от начального и конечного положения частицы и не зависит от пути по которому двигалась частица. Силы, обладающие таким свойством, называются консервативными силами. Отметим что консервативное поле сил являются частным случаем потенциального силового поля. Поле сил называется потенциальным, если его можно описать следующей функции П(x,y,z,t), градиент которой определяет силу в каждой точке поля: F=П.Функция П называется потенциальной функцией или потенциалом. E=T+U - это величина для частицы находящейся в поле консервативных сил. U входит слагаемым в интеграл движения имеющей размерность энергии. В связи с этим функцию U(x,y,z) называют потенциальной энергией частицы во внешнем поле сил. Иначе можно сказать что работа совершается за счет запаса потенциальной энергии. Связь силы и потенциальной энергии существует. Сравнение 1)F=Fxex+Fyey+Fzez=(-dU/dx)ex-(dU/dy)ey-dU/dz)*ez и 2) =(d/dx)ex+(d/dy)ey+(d/dz)ez что консервативная сила равна градиенту потенциальной энергии взятой с обратным знаком А=-U. Поле центральных сил- это поле характерное тем что направление силы действующей на частицу в любой точке пространства проходит через неподвижный центр а величина силы зависит только от расстояния до этого центра F=F(r). Согласно E=Ei=Ti+Ui=const полная механическая энергия системы независимо действующих частиц на некоторые действуют только консервативные силы, остаётся постоянной. Это утверждение выражает закон сохранения энергии для указанной механической системы. Согласно формуле A=kx2/2 как для расширения, так и для сжатия пружины на величину x необходимо затратить работу A=kx2/2. Эта работа идет на увеличение потенциальной энергии пружины.Зависимость потенциальной энергии пружины от удлинения имеет вид U=kx2/2 где k-коэффициент жесткости пружины (эта формула написана в предположении, что потенциальная энергия недеформированной пружины равна нулю). При упругой продольной деформации стержня совершается работа, определяемая формулой A=1/2(Es/l0)(l)2=1/2Esl0(l/l0)2=1/2Ev2. В соответствии с этим потенциальная энергия упруго деформируемого стержня равна U=(E2/2)V, где  - относительная деформация =x/l, E - модуль Юнга, а V - это объём тела. Потенциальная энергия в поле тяготения. Епот=-GmM/r.

Вопрос N 6.Закон сохранения механической энергии. Дисипация энергии.

Ответ.

Закон сохранения механической энергии. Механическая энергия системы тел, на которые действуют только консервативные силы остается постоянной величиной E=T+U, то есть является интегралом движения . Из уравнения следует, что U входит слагаемым в интеграл движения, имеющий размерность энергии. В связи с этим функцию U(x,y,z) называют потенциальной энергией частицы во внешнем поле сил. Eп=mgh; Ek=mv2/2. Поле консервативных сил - это частный случай потенциального силового поля.

Вопрос N7. Поступательные и вращательные движения твёрдого тела. Момент силы, момент импульса материальной точки. Связь между моментом силы и моментом импульса. Основное уравнение динамики вращательного движения. Момент инерции. Теорема Штейнера. Момент импульса относительно неподвижной оси. Закон сохранения момента импульса. Работа при вращении твёрдого тела. Кинетическая энергия вращающегося тела. Колебания математического и физического маятника.

Ответ.

Поступательное движение твёрдого тела. При поступательном движение все точки тела производят за один и тот же промежуток времени равные по величине и направлению перемещения, вследствие чего скорость и ускорения всех точек тела в каждый момент времени остаются равными, следовательно достаточно определить движение одной точки тела для того чтобы охарактеризовать полностью движение всего тела. Вращательное движение. При вращательном движение все точки тела движутся по окружностям, центры которых лежат на одной прямой, называемой осью вращения. Для описания вращательного движения нужно положение в пространстве оси вращения и угловая скорость тела в каждый момент времени. Момент силы. Моментом силы F относительно некоторой точки O называется векторная величина M, M=[rF];|rF|=|r||F|Sin,r-радиус-вектор M=Fl;l=rSin, l-плечо силы. Момент импульса материальной точки. Аддитивно сохраняющаяся величина, относительно точки O, для отдельно взятой частицы моментом импульса относительно точки O называется псевдовектор L=[r,p]=[r,mv]=m[r,v]. Основное уравнение вращательного движения. M=I, где M - это момент силы, действующий на тело, I - это момент инерции тела, а - это угловое ускорение. Момент инерции. Момент инерции - это величина равная сумме произведений всех масс на квадраты их расстояний от некоторой оси, I=miri2. Моменты инерций простейших тел. 1. Материальная точка I=mr2. 2. Тонкий однородный стержень I=1/12ml2, при оси проходящей через его центр масс. 3. Обруч I=mr2. 4. Диск I=1/2mr2. 5. Шар I=2/5mr2. Теорема Штейнера. Момент инерции тела относительно некоторой оси равен сумме момента инерции тела относительно оси, проходящей через его центр масс и параллельной данной и произведения массы тела на квадрат расстояния между осями. I=I0+ma2. Момент импульса тела относительно неподвижной оси. Для однородного тела, симметричного относительно оси вращения, момент импульса, относительно точки O, лежащей на оси вращения совпадает по направлению с вектором . В этом случае модуль импульса относительно оси равен M=I. Закон сохранения момента импульса. Этот закон основывается на динамики вращательного движения тела. D/dt(I)=MdL/dt=M.Если сумма моментов сил относительно оси равна 0, то момент импульса данной оси остаётся постоянным. Пример скамья Жуковского. Работа при вращении твёрдого тела. При вращении тела внутренние силы работы не совершают. Работа же внешних сил определяется формулой dA=Nd. Знак работы зависит от знака N, то есть от знака проекции вектора N на направление вектора . Кинетическая энергия вращающегося тела. Кинетическая энергия тела, вращающегося относительно неподвижной оси равняется T=1/2I2, где I - момент инерции относительно оси вращения. Колебания математического и физического маятника. Колебания это процесс отличающегося той или иной степенью повторяемости. Маятник - это твёрдое тело, совершающее под действием силы тяжести колебания относительно неподвижной точки или оси. Принято различать математический и физический маятники. Математический маятник - это идеализированная система, состоящая из невесомой нерастяжимой нити, на которой подвешено тело, масса которого сосредоточена в одной точке. Период T=2(l/g). Математический маятник с длинной нити l будет иметь такой период колебаний, как и физический маятник. Эта величина называется приведённой длинной lпр=I/ml. Если колеблющееся тело нельзя представить как материальную точку, то маятник называется физическим. T=2(I/mgl).

Вопроc N 8.

Преобразования Галилея. Механический принцип относительности. Опыт Майкельсона.

Ответ.

Преобразования Галилея. Рассмотрим две системы отсчета движущиеся друг относительно друга и с постоянной скоростью v0.Одну из этих систем обозначим буквой K. Будем считать неподвижной. Тогда вторая система K будет двигаться прямолинейно и равномерно. Выберем координатные оси x,y,z системы K и x',y',z' системы K' так что оси x и x' совпадали, а оси y и y' , z и z', были параллельны друг другу. Найдем связь между координатами x,y,z некоторой точки P в системе K и координатами x',y',z' той же точки в системе K'. Если начать отсчёт времени с того момента, когда начало координат системы, совпадали, то x=x'+v0, кроме того, очевидно, что y=y', z=z'. Добавим к этим соотношениям принятое в классической механике предположение, что время в обеих системах течёт одинаковым образом, то есть t=t'. Получим совокупность четырёх уравнений : x=x'+v0t;y=y';z=z';t=t', названных преобразованиями Галилея. Механический принцип относительности. Положение о том, что все механические явления в различных инерциальных системах отсчёта протекают одинаковым образом, вследствие чего никакими механическими опытами невозможно установить, покоится ли система или движется равномерно и прямолинейно носит названия принцип относительности Галилея. Нарушение классического закона сложения скоростей. Исходя из общего принципа относительности (никаким физическим опытом нельзя отличить одну инерциальною систему от другой), сформулированным Альбертом Эйнштейном, Лоуренс изменил преобразования Галилиея и получил : x'=(x-vt)/(1-v2/c2); y'=y; z'=z; t'=(t-vx/c2)/(1-v2/c2). Эти преобразования называются преобразованиями Лоуренса. Опыт Майкельсона. Пытаясь обнаружить так называемый "эфирный ветер", Майкельсон проводил опыт, в результате которого, при различии скорости света в разных направлениях интерференционные полосы должны были бы смещаться, но этого не происходило. Было предпринято множество попыток объяснить это явления исходя из наличия эфира, например, то, что эфир увлекается землёй, при её вращении. Но они были недостаточно убедительны и противоречивы. После чего в 1905 году Альберт Эйнштейн объяснил отрицательный результат опыта Майкельсона-Морли, его исходя из постоянства скорости света, в любых инерциальных системах отсчёта (обобщив принцип относительности Галилея).

Вопрос N9. Постулаты СТО. Преобразования Лоуренса. Следствие из преобразований Лоуренса.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее