albert (Исследование совместного электровосстановление гадолиния и криолита в галогенидных расплавах), страница 4

2016-08-01СтудИзба

Описание файла

Документ из архива "Исследование совместного электровосстановление гадолиния и криолита в галогенидных расплавах", который расположен в категории "". Всё это находится в предмете "химия" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "химия" в общих файлах.

Онлайн просмотр документа "albert"

Текст 4 страницы из документа "albert"

На экспериментальных зависимостях τ1/2 – 1/i отмечается наличие двух прямолинейных участков с разными наклонами. Анализ этих зависимостей по общеизвестной методике подтверждает высказанное авторами предположение о роли химической стадии в процессе восстановления алюминия. По-видимому, в данной работе впервые обнаружено наличие кинетического тока в чисто галогенидном расплаве. Наиболее ярко влияние предшествующей химической реакции проявляется в области эквимолярного состава. С увеличением концентрации хлорида алюминия кинетические торможения ослабевают, а при его значительном избытке процесс переходит к чисто диффузионному режиму. Аналогичные данные были получены и в работе [60].

Делимарский Ю.К. с сотр. [56] изучили разряд алюминия на фоне расплава KCl-NaCl при 730ºС и концентрациях хлорида алюминия(0,5–1,2).10-2 моль/см3 в потенциодинамическом режиме поляризации. На вольтамперных характеристиках фиксируется волна со значением E = 0,67 – 0,70 В (относительно свинцового электрода сравнения) в зависимости от концентрации хлористого алюминия. При этом волна обладает всеми признаками обратимости и описывается уравнением обратимого разряда с деполяризацией. Анализ полярографической волны дает прямую линию с угловым коэффициентом, соответствующим трехэлектронному обратимому переходу.

Авторы отличают диффузионный контроль электродного процесса. При этом в качестве АЭЧ они принимают ионы алюминия. При разбавлении расплава перед основной волной появляется дополнительная волна, которая тоже описывается уравнением обратимой волны. Авторы объясняют наличие этой волны перезарядкой ионов алюминия до одновалентного состояния.

Следует отметить, что на неполный разряд при низких плотностях тока (0,08 А/см2) указывается и в [61].

Автор, исследуя зависимость поляризации графитовых электродов в хлоридно-фторидном электролите от плотности тока, показал, что при низких плотностях тока преимущественно происходит неполный разряд.

Автор работ [62, 63] исследуя механизм электровосстановления алюминия в хлоралюминатном расплаве на индифферентных (графитовом и стеклографитовом) электродах, сделали заключение об обратимом трехэлектронном переходе с участием AlCl4-. Исследования были проведены также в расплавленных хлоридных системах различного катионного состава.

В частности, полярографическому исследованию были подвергнуты расплавленные солевые системы: (KCl-NaCl) + AlCl3, (LiCl-NaCl) + AlCl3, (CaCl2- NaCl) + AlCl3, (KC l-NaCl-MgCl2) + AlCl3.

Отмечается, что различие в катионном составе существенно не влияет на потенциал восстановления алюминия. Все кривые, за исключением полученных в магнийсодержащем расплаве, описываются уравнением обратимой волны с деполяризацией, обусловленной взаимодействием выделяющегося металла с материалом электрода. В магнийсодержащем расплаве волна на вольтамперной кривой имела форму, характерную для разряда без деполяризации и описывалась уравнением Кольтгофа – Лингейма.

Авторы работы [60] при гальваностатическом режиме поляризации катода в расплаве МеCl-AlCl3 (где Ме - К, Na) обнаружили наличие кинетического процесса.

По мнению авторов, при 500 ºС предшествующая реакция диссоциации комплекса: MeAlCl4 AlCl3 – МеCl протекает с конечной скоростью и лимитирует скорость электродного процесса в целом. В стадии перехода непосредственно участвуют мономеры хлорида алюминия. Как видно, эти данные находятся в соответствии с данными, приведенными в работе [59], и подтверждают возможность существования в расплавленных хлоридах медленных сопряженных химических реакций, способных лимитировать скорость электродного процесса в целом.

Таким образом, на основании анализа литературных данных по изучению кинетики электровосстановления алюминия в галогенидных расплавах нужно отметить, что исследования были проведены в основном в хлоралюминатных расплавах.

Что касается кинетики процесса электровосстановления фторидных соединений алюминия на фоне хлоридных расплавов, то информация по этому вопросу отсутствует. Исходя из этого, нами были проведены исследования по изучению кинетических закономерностей протекания процессов электровосстановления алюминия в хлоридно-фторидных расплавах.

Глава II.

Методы исследования и методика проведения эксперимента
    1. Выбор электролитических методов исследования

электродных процессов в расплавленных средах и применяемая аппаратура.

В последние несколько лет наблюдается развитие теории и практики электрохимических методов исследования. Согласно общей классификации электрохимических методов анализа, предложенной ИЮПАК [58], методы, в которых изучаются электродные реакции, подразделяются на два подкласса:

1) методы, в которых возбуждаемый электрический сигнал постоянен или равен нулю, как например, потенциометрия;

2) методы, в которых возбуждаемый сигнал меняется во времени.

Методы второго подкласса в свою очередь можно разделить на две группы. В методах первой группы используются большие переменные сигналы, причем “большие” означает более удвоенного значения 2,3 RT/F. В эту группу входят все методы, в которых происходит изменение потенциала или тока, например, вольтамперометрия и ее варианты, полярография и большинство ее вариантов, а также некоторые хронопотенциометрические методы. Во вторую группу входят все методы, в которых используются переменные малые сигналы, где “малые” означает сигналы с амплитудами, меньшими, чем 2,3 RT/F: это переменно-токовая и квадратно-волновая полярография.

Методом исследования совместного электровосстановления ионов гадолиния и кобальта (никеля) нами выбрана вольтамперометрия (ВА). Она включает группу электрохимических методов, в которых контролируемый параметр - потенциал индикаторного электрода - меняется во времени, а измеряемой величиной является ток, протекающий через индикаторный электрод.

Методом исследования электровосстановления ионов РЗМ нами выбрана вольтамперометрия (ВА). Она включает группу электрохимических методов, в которых контролируемый параметр - потенциал индикаторного электрода - меняется во времени, а измеряемой величиной является ток, протекающий через индикаторный электрод.

Под вольтамперометрией понимается большая группа методов изучения кинетики электродных процессов, в которых во времени изменяется потенциал исследуемого электрода (обычно по линейному закону) и измеряется ток, протекающий через электрохимическую ячейку. Частью вольтамперометрического метода является полярография. В настоящее время под полярографией понимаются вольтамперометрические исследования с применением жидких капельных электродов (в основном - ртутных).

Применение полярографии к расплавленным средам затруднено по ряду причин, главным образом, высокой летучестью ртути. Полярографические кривые трудно воспроизводятся и на них недостаточно четко выражены области предельных токов. Величины потенциалов разложения не совпадают, как правило, с ЭДС соответствующих обратимых гальванических цепей. Это объясняется отсутствием надежных индикаторных электродов и электродов сравнения, высокой температурой процессов, обусловливающей ускорение деполяризации, неудовлетворительной конструкцией электрохимической ячейки с разделенными приэлектродными пространствами.

Методы, при которых потенциал меняется во времени достаточно медленно (1-4 мВ/с), так, что наблюдаемые явления могут быть описаны количественно на основании равновесных или квазиравновесных теорий, называется классической или стационарной вольтамперометрией (КВА). При малых скоростях поляризации электродной системы запись вольтамперных кривых осуществляется обычно с помощью электронных потенциометров. Другой разновидностью вольтамперометрического метода является вольтамперометрия с быстрой разверткой потенциала или осциллографическая вольтамперометрия (осциллографическая полярография). В этом случае скорость поляризации рабочего электрода составляет от 10 мВ/с до 100 В/c. При таких высоких скоростях поляризации запись вольтамперных кривых производится с помощью осциллографа или дисплея. Классическая кривая имеет предельный ток (Iпр.), а осциллографическая кривая - четко выраженный максимум (пик). В качестве основных, экспериментально определяемых параметров в методе классической вольтамперометрии служат предельный ток Iпр. и потенциал полуволны 1/2 (при I = Iпр/2), а в методе осциллографической вольтамперометрии - ток пика Ip и потенциал полупика 1/2 (при Iпp/2).

Теория классической и осциллографической вольтамперо­метрии применительно к простым и сложным электрохимическим процессам рассмотрена в монографиях Д. Плэмбэка и З. Галюса [59, 60]. Методы с быстрой разверткой потенциала, в которых на­правление изменения потенциала меняется на обратное, называются циклическими. Циклическая вольтамперометрия (ЦВА) представляет собой вольтамперометрический метод, в котором фиксируется изменение во времени тока, протекающего через изучаемую систему при наложении на нее напряжения, изменяющегося во времени по закону треугольника. Теоретические основы ЦВА разработаны Николсоном и Шейном [61], а хороший обзор теоретических положений дал Адамсон [62]. Независимыми переменными в этом методе являются скорость и пределы изменения потенциала индикаторного электрода. Предельное значение потенциала, при котором направление его развертки меняется на обратное, называется потенциалом возврата, переключения или обрыва. Рассмотренные выше вольтамперометрические методы являются одними из наиболее нормативных. Но при изучении электрохимического поведения иона лантана нами чаще будут использоваться КВА и ОВА.

Рассмотрим основы теории этого метода [63].

Классическая вольтамперометрия.

Рассмотрим случай обратимой электродной реакции:

Охn+ + ne Red (2.1)

которая протекает на плоском электроде в условиях избытка индифферентного электролита в исследуемом расплаве. Лимитирующей стадией процесса является диффузия разряжающихся ионов Oxn+ к поверхности индикаторного (рабочего) электрода. В этих условиях массоперенос осуществляется путем полубесконечной линейной диффузии и у поверхности электрода возникает изменяющийся во времени градиент концентрации ионов Oxn+. Решая дифференциальное уравнение Фика относительно концентраций Cox(x, t) и СRed(x, t) при x = 0 и подставляя их значения в уравнение Нернста, получаем зависимость, которая описывает классическую полярограмму. При этом различают случай, когда продукт реакции (2.1) растворим в расплаве или материале электрода, то есть имеет место сплавообразование (случай а), или продукт Red нерастворим и накапливается на поверхности индикаторного электрода (случай б).

а) Восстановление и окисление нерастворимых веществ.

Для этого случая связь между потенциалом и током в любой точке вольтамперной кривой описывается уравнением Гейровского - Ильковича:

(2.2)

Плюс в уравнении (2.2) относится к процессу катодного восстановления, а минус  к реакции анодного окисления вещества .

б) Восстановление и окисление нерастворимых веществ.

В этом случае вещество Red, образующееся в ходе реакции (2.1) нерастворимо ни в расплаве, ни в материале электрода, поэтому уравнение Гейровского - Ильковича можно упростить. Наличие вещества на поверхности электрода позволяет принять его активность аRed = 1 (Red = 1; CRed = 1); при этом уравнение вольтамперной кривой принимает следующий вид:

(2.3)

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5209
Авторов
на СтудИзбе
430
Средний доход
с одного платного файла
Обучение Подробнее