157274 (Соотношение интуитивного и логического в математике)

2016-08-01СтудИзба

Описание файла

Документ из архива "Соотношение интуитивного и логического в математике", который расположен в категории "". Всё это находится в предмете "философия" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "философия" в общих файлах.

Онлайн просмотр документа "157274"

Текст из документа "157274"

Вопрос о взаимосвязи математики и философии впервые был задан довольно давно. Аристотель, Бэкон, Леонардо да Винчи - многие

великие умы человечества занимались этим вопросом и достигали выдающихся

результатов. Это не удивительно: ведь основу взаимодействия философии

с какой-либо из наук составляет потребность использования аппарата

философии для проведения исследований в данной области; математика же,

несомненно, более всего среди точных наук поддается философскому анализу

(в силу своей абстрактности). Наряду с этим прогрессирующая математизация

науки оказывает активное воздействие на философское мышление.

Если пытаться некоторым образом классифицировать различные науки, то неизбежно приходишь к выводу, что и математика, и философия занимают некоторое особое место в этой классификации. Необходимо замечаешь, что между ними много общего. Рассмотрим этот вопрос поподробнее.

Во времена античности и средневековья вообще нельзя было отделить математику и философию. Примером тому являются Аристотель и Декарт, которым математики обязаны новыми взглядами на логику и на геометрию. В то же время эти ученые создали собственные философские учения, тесно связанные, лучше даже сказать, неотделимые от их исследований в области математики. И обратно, их математические результаты базируются на их философских взглядах и в то же время следуют из них. Такое положение продолжалось вплоть до XVII веков. Даже

фундаментальный труд Исаака Ньютона, положивший начало всему

дифференциально-интегральному исчислению и механике, был озаглавлен

"Математические начала натуральной философии". Надо сказать, что и в

дальнейшем все настоящие великие математики являлись и

мыслителями-философами. К их числу можно отнести, кроме вышеперечисленных,

Лобачевского, Римана, Брауэра, Гильберта, Пуанкаре, Геделя.

Затем философия выделяется в

отдельную область человеческого знания, причем очень специфическую

область. Если различные естественные науки имеют дело с материальными

объектами, изучая их с некоторой, вполне определенной точки зрения

(биология - с живыми организмами, физика - с пространством, временем,

телами и т. д.), общественные и социальные науки имеют дело с такими

понятиями, как государство, революция и эволюция и т. д., гуманитарные

науки - со словом, текстом, музыкой, психология имеет

дело с мозгом и поведением человека и т.д., то философия делает предметом

своего анализа обобщения частных наук. Если учесть, что каждая

частная наука как раз и характеризуется тем, что обобщает и классифицирует

знания, то философия имеет дело с более высоким, вторичным уровнем

обобщения.

То же самое можно сказать и про математику. Ни один

математический объект не встречается в реальной жизни. При этом если для

некоторых объектов, как то точка, прямая, натуральное число, мы можем

увидеть и осознать их грубую модель в природе, то для подавляющего

большинства математических понятий таких моделей нет и быть не может.

Они возникли как чисто умозрительные построения и обобщения уже построенных объектов. Парадокс состоит в том, что при всем своем отрыве от действительности они помогают познавать природу. Надо заметить, что это происходит не напрямую, а с помощью привлечения еще какой-либо науки из области естествознания, а последнее время и общественные науки стали серьезно использовать математические методы в своих исследованиях. Таким образом, математика тоже имеет дело со вторичным уровнем обобщения.

Особняком ко всем наукам стоит логика. Все науки, в том числе философия и математика) подчиняются

формально-логическим законам (иначе они теряют право называться наукой), в то же время логика - наука об наиболее общих законах мышления, поэтому ее можно рассматривать как часть философии или близкую к ней науку. Не случайно Гедель рассматривал философию прежде всего с точки зрения "науки

логики". ootnote Философия. Под ред. В.Н Лавриненко. М.,1996. С.25 В то же время логика рассматривается как часть математики, так как

логические законы могут быть отображены в формализованные языки

(логические исчисления) и исследованы с помощью математических методов.

Именно в математике обращается наибольшее внимание на логическую

строгость доказательств, и именно в связи с проблемой обоснования

математики были разработаны неклассические логики. Их создание и развитие,

в свою очередь, сильно повлияло на развитие математики, в частности,

общей алгебры, топологии, теории множеств, теории рекурсивных функций и

многих других областей математики. Ни с одной другой наукой логика не

находится в таком тесном взаимопроникновении, как с математикой и

философией. Знаменательно, что законы логики заложил Аристотель -

философ и математик.

Кроме того, и математика, и философия характеризуются одной важной особенностью, которой в такой мере не обладает ни одна другая наука. Эта особенность напрямую вытекает из того, что обе науки имеют дело со вторичным уровнем абстракции. Ни математик, ни философ не имеют возможности воспользоваться напрямую таким действенным методом познания, как практический эксперимент или опыт. Ни математику, ни философу не нужно дорогостоящее оборудование или статистические данные. Они довольствуются умозрительными экспериментами и данными других наук. Для работы им необходимо иметь только ручку и лист бумаги (или другое средство для записи мыслей и результатов). Таким образом, если чувственное познание отходит на второй план, возрастает роль логического познания. Как ни парадоксально, при этом в творческом процессе возрастает роль интуиции, озарения, которую зачастую противопоставляют логике и не всегда признают в качестве способа достижения новых результатов, представляя движение мысли как ряд непрерывных строго обоснованных логических звеньев цепи силлогизмов. Именно роли и месту интуиции и логики в математике и математическом творчестве посвящен данный реферат.

ewpage

egincenter

f

История вопроса ootnoteОсновные факты, используемые в этой части, взяты из книг [3] и [4]

ndcenter

Сейчас в математике, как ни в одной другой науке, особое внимание обращается на строгость и логическую последовательность доказательств. При этом те рассуждения, которые применялись еще сравнительно недавно и рассматривались как строгие, на нынешнем этапе уже не являются доказательствами и требуют дополнительного обоснования. Например, допускали, что непрерывная функция не может изменить знак, не проходя через нуль. Теперь это доказывают.

Первым особое внимание логической стройности рассуждений уделил Аристотель. Именно его понятие силлогизма и группа выделенных им законов (тождества, противоречия и исключенного третьего), по которым должно строится любое доказательство, надолго определили развитие логики. Группа работ Аристотеля была объединена под названием "Органон", то есть инструмент для получения истинного знания. В Новое время вопросами теории познания (в то время еще не отделившейся от логики) занимались Фрэнсис Бэкон и Рене Декарт. В частности, был поставлен вопрос о формировании исходных понятий (определений и аксиом). У Бэкона основным инструментом познания служила индукция, а у Декарта --- дедукция. Декарт, как истинный геометр, призывал допускать в качестве истинных только очевидные утверждения.

Таким образом, аксиомы постигаются интуитивно, а все остальные знания выводятся из них с помощью дедукции без пропуска логических звеньев. В "Рассуждении о методе" Декарт предлагает следующие правила познания:

1) допускать в качестве истины только такие утверждения, которые ясно и отчетливо представлены уму и не могут вызывать

никаких сомнений; 2) расчленять сложные задачи на более простые и

доступные для решения; 3) последовательно переходить от известного и доказанного к неизвестному и недоказанному; 4) не допускать пропуска звеньев в цепи логических доказательств.

Родоначальником современной математической логики явился Готфрид Лейбниц, развивший аристотелевскую силлогистику и учение Декарта о врожденных

идеях. Именно он выдвинул идею создания алфавита мыслей, или универсального языка. Если создать систему знаков для высказываний, подобную системе цифр в арифметике, и создать некую формальную комбинаторику, которая может определять истинность или ложность некоторой мысли или утверждения, то можно получить общий метод и с помощью формально логических законов получать все возможные истины или определять случаи, когда высказывание неизбежно окажется ложным.

Противоположных взглядов на математику

придерживался философ Иммануил Кант. Если, по Лейбницу, все

математические науки можно воплотить в некотором универсальном логическом исчислении, то Кант утверждал, что все математические положения могут доказываться только путем обращения к наглядному представлению, которое дается только априорными формами чувственности.

Но в прошлом веке положение начало резко меняться.

Начало этому положила геометрия Лобачевского, в которой

только один постулат (аксиома) отличался от традиционной евклидовой геометрии. Эта геометрия уже не соответствовала привычным представлениям людей, но в то же время была логически безупречна и непротиворечива. Дальнейшие работа немецкого математика Римана, создавшего систему различных геометрий, наиболее известна из которых сферическая геометрия Римана, итальянского математика Бельтрами показали, что геометрии можно строить на различных системах аксиом и получать при этом непротиворечивые теории. Математика перешла на новый уровень абстракции.

Что же послужило толчком для подобного события? Основу классической геометрии составляли пять постулатов Евклида, из которых первые четыре казались очевидными, и только пятый был достаточно сложным и казался более похожим на теорему. На протяжении почти двух тысячелетий многие математики пытались вывести его из других аксиом, но это не удавалось. Тем не менее, на геометрию смотрели как на идеал научного знания, и вопрос о единственности геометрии был не просто математическим вопросом, а имел мировоззренческий, философский характер. У Канта, например, идея единственности геометрии была органичной частью его философской системы. Иначе говоря, в то время математики рассуждали так: геометрия Евклида является великолепно выстроенным зданием, правда, в нем есть некоторая неясность, связанная с 5 постулатом, однако, в конце концов, все выясниться и неясность будет устранена.

Однако в начале XIX века вдруг наступил кризис в отношении пятого постулата, и сразу трое человек (Н. Лобачевский, Ф. Гаусс и Я. Больяи) решают этот кризис методом построения новой геометрии. Почему же именно в этот момент произошел перелом? Вряд ли можно предполагать, что одновременно появились три гения, которых не было на протяжении многих веков.

Дело в том, что проблема пятого постулата предстала перед математиками в новом свете, уже не как досадная неясность, а как проблема,

порождающая ряд фундаментальных вопросов: как вообще должна быть построена математика? Может ли она быть построена на действительно прочных основаниях? Является ли она достоверным знанием? Является ли она логически точным знанием? Эти вопросы возникли не в связи с постановкой проблемы пятого постулата, а были определены общим состоянием математики в тот исторический момент.

Вплоть до XVII века математика находилась как бы в зачаточном состоянии. Наиболее разработана была геометрия, известны начала алгебры и тригонометрии. Но с XVII века математика начала бурно развиваться, и к началу XIX века она представляла собой довольно сложную и развитую систему знаний. Для нужд механики было создано и развивалось дифференциальное и интегральное исчисление; значительное развитие получила алгебра, появилось понятие функции; появилась теория вероятностей и теория рядов. Математическое знание выросло не только количественно, но и качественно. С этим развитием появилось множество новых понятий, которые математики не могли истолковать. Например, алгебра несла с собой понятие числа. Положительные, отрицательные и мнимые величины были в равной степени ее объектами, но что это такое, никто толком не знал до XIX века. Не было ответа даже на более общий вопрос --- что такое число? Что такое бесконечно малая величина, которая уже широко использовалась в дифференциальном и интегральном исчислениях? Как можно обосновать дифференцирование, интегрирование, суммирование рядов, то есть операции, требующие предельного перехода? Что представляет собой вероятность?

В итоге именно в XIX веке сложилась кризисная ситуация в математике.

Но трудности истолкований новых понятий еще можно было понять: то, что неясно сегодня, станет ясно завтра, когда соответствующая область получит должное развитие, когда там будет сосредоточено достаточное количество интеллектуальных усилий. Иначе дело обстояло с проблемой пятого постулата --- она стояла уже около двух тысячелетий, и многие люди ей занимались, но решения не было. Может быть, что эта проблема устанавливала некий эталон для истолкования тогдашнего состояния математики и уяснения того, что есть математика вообще. Возможно, математика не является точным знанием. В свете этих вопросов проблема пятого постулата перестала быть частной задачей, а стала фундаментальной проблемой и была решена путем построения новых геометрий. Параллельно на основе нового взгляда на метематику развивались и другие области.

Алгебра логики возникла в работах англичанина Джона Буля, который предложил рассматривать логику как алгебру, где переменные принимают только два значения - 0 и 1, и применять к высказываниям методы алгебры. Буль полагал, что есть некие общие принципы мышления, что дает основания для аналогий между логикой и алгеброй. Эта идея блестяще подтвердилась, кроме того, булевозначные алгебры, как оказалось, являются моделями классической теории множеств.

На этом подходе ныне базируется вся электронно-вычислительная техника. Дальнейшее развитие этот подход получил в работах математика Готлоба

Фреге, который осуществил дедуктивно-аксиоматическое построение логики высказываний и

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5168
Авторов
на СтудИзбе
438
Средний доход
с одного платного файла
Обучение Подробнее