phizika (Физика (лучшее)), страница 5

2016-08-01СтудИзба

Описание файла

Документ из архива "Физика (лучшее)", который расположен в категории "". Всё это находится в предмете "физика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "физика" в общих файлах.

Онлайн просмотр документа "phizika"

Текст 5 страницы из документа "phizika"

1. Радиоактивность. Процесс самопроизвольного распада атомных ядер называют радио­активностью. Радиоактивный распад ядер сопровождается превращени­ем одних нестабильных ядер в другие и испусканием различных частиц. Было установлено, что эти превращения ядер не зависят от внешних усло­вий: освещения, давления, температуры и т.д. Существует два вида радио­активности: естественная и искусственная. Естественная радиоактивность наблюдается у химических элементов находящихся в природе. Как прави­ло, она имеет место у тяжёлых ядер, располагающихся в конце таблицы Менделеева, за свинцом. Однако имеются и лёгкие естественно-радиоактивные ядра: изотоп калия , изотоп углерода и другие. Искусственная радиоактивность наблюдается у ядер, полученных в лабо­ратории с помощью ядерных реакций. Однако принципиального различия между ними нет.

Известно, что естественная радиоактивность тяжёлых ядер сопровож­дается излучением, состоящим из трёх видов: -, -, -лучи. -лучи - это поток ядер гелия обладающих большой энергией, которые имеют дискретные значения. -лучи - поток электронов, энергии которых при­нимают всевозможные значения от величины, близкой к нулю до 1,3 МэВ. -лучи — электромагнитные волны с очень малой длиной волны.

Радиоактивность широко используется в научных исследованиях и технике. Разработан метод контроля качества изделий или материалов – дефектоскопия. Гамма-дефектоскопия позволяет установить глубину залегания и правильность расположения арматуры в железобетоне, выявить раковины, пустоты или участки бетона неравномерной плотности, случаи неплотного контакта бетона с арматурой. Просвечивание сварных швов позволяет выявить различные дефекты. Просвечиванием образцов извест­ной толщины определяют плотность различных строительных материалов; плотность, достигаемую при формировании бетонных изделий или при укладке бетона в монолит, необходимо контролировать, чтобы получит заданную прочность всего сооружения. Степень уплотнения грунтов и до­рожных оснований — важный показатель качества работ. По степени по­глощения -лучей высокой энергии можно судить о влажности материа­лов. Построены радиоактивные приборы для измерения состава газа, при­чём источником излучения в них является очень небольшое количество изотопа, дающего -лучи. Радиоактивный сигнализатор позволяет опреде­лить наличие небольших примесей газов, образующихся при горении лю­бых материалов. Он подаёт сигнал тревоги при возникновении пожара в помещении.

2. Методы регистрации заряженных частиц. В настоящее время хорошо установлено, что ядро атома имеет слож­ную структуру и состоит из протонов и нейтронов. Из рассмотрения явле­ния радиоактивности следует, что ядра могут претерпевать существенные изменения. Всё это наводит на мысль, что нуклоны могут превращаться друг в друга и сама структура протонов, нейтронов и даже электронов мо­жет быть сложной. Встаёт вопрос о том, существуют ли какие-то кирпичики мироздания (их физики назвали элементарными частицами), из кото­рых построено всё? Ответ оказался очень сложным, и сейчас ещё на него нет окончательного ответа. В настоящее время физикам известны сотни элементарных (или, как говорят, субъядерных) частиц. Изучением их за­нимаются учёные, работающие в области физики элементарных частиц. Каким же образом можно “увидеть’, зарегистрировать столь малые объек­ты, которые недоступны никакому микроскопу? для этого разработан це­лый ряд хитроумных, весьма тонких способов, которые позволяют не только их зарегистрировать, распознать, но и увидеть их взаимные пре­вращения.

Рассмотрим только некоторые наиболее важные и широко используе­мые методы регистрации излучений. Элементарные частицы удаётся на­блюдать благодаря тем следам, которые они оставляют при своем прохож­дении через вещество. Это связано с тем, что заряженные частицы вызывают ионизацию молекул на своём пути. нейтральные частицы, такие как нейтроны, следов не оставляют, но они могут обнаружить себя в момента спада на заряженные частицы или в момент столкновения с каким – либо ядром.

1. Сцинцилляционные методы. Существует ряд веществ (бензол, нафталин, сернистый цинк с серебром и т.д.), которые дают световую вспышку (сцинцилляцию) при прохождении через них ионизирующего излучения. Эту вспышку можно зарегистрировать как просто глазом, так и соответствующим прибором, преобразующим световой сигнал в электри­ческий.

2. Счётчик Гейгера. Это устройство представляет собой стеклянную трубку, наполненную газом, в которую введены два электрода. Одни явля­ется цилиндрической поверхностью, другой тонкой проволокой, про­ходящей с одного торца к другому, по оси цилиндра. К электродам подво­дится напряжение. При пролёте через такую трубку заряженной Частицы, молекулы газа ионизируются, образовавшиеся ионы разгоняются электри­ческим полем и в свою очередь ионизируют другие молекулы, в результате чего образуется лавина ионов. В этот момент по электрической цепи, в ко­торую включена трубка, проходит ток в виде импульса. Процесс повторя­ется при каждом пролёте частицы, и электронный прибор регистрирует и считает число пролетевших частиц. Счётчик Гейгера играет весьт’4а боль­шую роль при изучении радиоактивности, радиоактивного заражения, при измерении доз, полученных в заражённых зонах.

3. Метод толстослойных фотопластин Заряженные частицы, прохо­дя через фотоэмульсию, вызывают такое же действие, как свет. Поэтому после проявления фотоматериала в эмульсии проявляется видимый след, который можно легко увидеть в микроскоп.

4. Камера Вильсона. Принцип действия камеры основан на явлении конденсации пересыщенного пара при пролёте через него заряженной час­тицы. дорожку из капелек жидкости можно сфотографировать С несколь­ких точек и получить данные о пространственном расположении траекто­рии полёта частицы. Если камеру поместить между полюсами электромаг­нита, то в результате взаимодействия частицы с полем траектории частицы будет искривляться и по этому искривлению можно определить знак заря­да частицы и её импульс.

Биологическое действие радиоактивных излучении Излучения радиоактивных веществ оказывают очень сильное воздействие на все живые организмы. Даже сравнительно слабое излучение, которое при полном поглощении повышает темпера­туру тела лишь на 0,00 1 °С, нарушает жизнедеятельность клеток.

Живая клетка — это сложный механизм, не способный про­должать нормальную деятельность даже при малых поврежде­ниях отдельных его участков. Между тем даже слабые излучения способны нанести клеткам существенные повреждения и вызвать опасные заболевания (лучевая болезнь). При большой интен­сивности излучения живые организмы погибают. Опасность излу­чений усугубляется тем, что они не вызывают никаких болевых ощущений даже при смертельных дозах.

Механизм поражающего биологические объекты действия из­лучения еще недостаточно изучен. Но ясно, что оно сводится к ионизации атомов и молекул и это приводит к изменению их химической активности. Наиболее чувствительны к излучениям ядра клеток, особенно клеток, которые быстро делятся. Поэтому в первую очередь излучения поражают костный мозг, из-за чего нарушается процесс образования крови. Далее наступает пора­жение клеток пищеварительного тракта и других органов.

Сильное влияние оказывает облучение на наследственность. В большинстве случаев это влияние является неблагоприятным.

Облучение живых организмов может оказывать и опреде­ленную пользу. Быстро размножающиеся клетки в злокачествен­ных (раковых) опухолях более чувствительны к облучению, чем нормальные. На этом основано подавление раковой опухоли -лучами радиоактивных препаратов, которые для этой цели более эффективны, чем рентгеновские лучи.

Доза излучения. Воздействие излучений на живые организмы характеризуется дозой излучения. Поглощенной дозой излучения D называется отношение поглощенной энергии Е ионизи­рующего излучения к массе гп облучаемого вещества:

В СИ поглощенную дозу излучения выражают в г р э я х (сокращенно: Гр). Гр равен поглощенной дозе излучения, при которой облученному веществу массой 1 кг передается энергия ионизирующего излучения 1 Дж:

Естественный фон радиации (космические лучи; радиоактив­ность окружающей среды и человеческого тела) составляет за год дозу излучения около Гр на человека. Международ­ная комиссия по радиационной защите установила для лиц, рабо­тающих с излучением, предельно допустимую за год дозу 0,05 Гр. Доза излучения в 3 – 10 Гр, полученная за короткое время, смертельна.

Защита организмов от излучения. При работе с любым источ­ником радиации (радиоактивные изотопы, реакторы и др.) необхо­димо принимать меры по радиационной защите всех людей, могущих попасть в зону действия излучения.

Самый простой метод защиты это удаление персонала от источника излучения на достаточно большое расстояние. Даже без учета поглощения в воздухе интенсивность радиации убыва­ет о пропорционально квадрату расстояния от источника. Поэтому ампулы с радиоактивными препаратами не следует брать руками. Надо пользоваться специальными щипцами с длинной ручкой.

В тех случаях, когда удаление от источника излучения на достаточно большое расстояние невозможно, используют для защиты от излучения преграды из поглощающих материалов.

Наиболее сложна защита от -лучей и нейтронов из-за их большой проникающей способности. Лучшим поглотителем -лу­чей является свинец. Медленные нейтроны хорошо погло­щаются бором и кадмием. Быстрые нейтроны предварительно замедляются с помощью графита.

Билет № 11

1.Работа в термодинамике. Пусть газ находится в цилиндрическом сосуде с площадью поперечного сечения S, закрытом подвижным поршнем. Нагреем газ, в результате чего его объем увеличивается. Найдем работу, совершаемую газом при его расширении. Она равна работе, которую совершает сила, действующая на поршень, при его перемещении. При движении поршня в общем случае давление газа и сила F, приложенная к поршню, изменяются. Поэтому рассмотрим случай расширения газа, когда его давление остаётся постоянным. Предположим, что поршень переместился на расстояние l. Механическая работа А находится по формуле так как угол между силой и перемещением равен нулю и cos = 1. Модуль силы F находим через давление Р, которое оказывает газ на пор­шень: . С учётом этого получаем А = PSl. Но V= Sl — изменение объёма газа. Итак,

2. Внутренняя энергия. Одним из важнейших понятий термодинамики является внутренняя энергия. Внутренней энергией термодинамической системы называют сумму кинетической и потенциальной энергии всех частиц, входящих в неё. Следовательно, внутренняя энергия состоит из кинетической энергии молекул (атомов) и потенциальной энергии электронов в молекулах (атомах) и из внутриядерной энергии. Необходимо отметить, что термодинамика изучает лишь такие переходы термодинамической системы из одного состояния в другое, при которых изменяются только кинетическая и потенциальная энергия молекул (или атомов), из которых она состоит. Внутренняя энергия однозначно определяется параметрами состояния и не зависит от пути перехода в это состояние. Выбор состояния системы, в котором внутренняя энергия принимается равной нулю, произволен. Обычно счи­тают, что внутренняя энергия равна нулю при температуре 0 К.

2. В качестве примера найдём внутреннюю энергию идеального одноатомного газа, т.е. газа состоящего из атомов. Такими газами являются ге­лий, неон, аргон и другие. В идеальном газе притяжение между молекула­ми отсутствует. Поэтому их потенциальная энергия равна нулю. Тогда внутренняя энергия этого газа будет складываться только из кинетических энергий отдельных молекул. Вычислим сначала внутреннюю энергию од­ного моля газа. Известно, что число молекул, наход5пцвхся в одном моле вещества, равно числу Авогадро NA. Согласно (24.1), средняя кинетиче­ская энергия молекулы находится по формуле k> = (3/2) kТ. Следователь­но, внутренняя энергия U одного моля идеального газа равна

так как — универсальная газовая постоянная. Внутренняя энергия U произвольной массы газа m будет равна внутренней энергии одного моля, умноженной на число молей , где  - молярная масса газа, т.е.

Таким образом, внутренняя энергия данной массы идеального газа за­висит только от температуры и не зависит от объёма и давления.

3. Первый закон термодинамики. Внутренняя энергия термодинамической системы под воздействием ряда внешних факторов меняется, о чём, как видно из (27.2), можно судить по изменению температуры этой системы. Например, когда быстро сжать газ, то его температура повышается. Если привести в контакт два тела, имеющих разные температуры, то температура более холодного тела по­вышается, а более нагретого понижается. В первом случае внутренняя энергия изменяется за счёт работы внешних сил, во втором происходит обмен кинетическими энергиями молекул, в результате чего суммарная кинетическая энергия молекул нагретого тела уменьшается, а менее нагре­того - возрастает. Это приводит к передаче энергии от горячего тела к холодному без совершения механической работы. Процесс передачи энерг­ии от одного тела к другому без совершения механической работы получило название теплопередачи или теплообмен,. Передача энергии между телами, имеющими разные температуры, характеризуется величиной, на­зываемой количеством теплоты или теплотой. Количество теплоты - это энергия, переданная путём теплообмена от одной термодинамиче­ской системы к другой вследствие разности температур этих систем.

Рассмотрение понятия внутренней энергии и количества теплоты ис­пользуется в формулировке первого закона термодинамики, играющего первостепенную роль при изучении различного рода термодинамических процессов.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5288
Авторов
на СтудИзбе
417
Средний доход
с одного платного файла
Обучение Подробнее