part1 (Лекции по механике), страница 4

2016-08-01СтудИзба

Описание файла

Документ из архива "Лекции по механике", который расположен в категории "". Всё это находится в предмете "физика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "физика" в общих файлах.

Онлайн просмотр документа "part1"

Текст 4 страницы из документа "part1"

Рассмотрение сил трения можно ограничить двумя примерами : силами сухого и силами вязкого трения7. Сила сухого трения скольжения известна из школьного курса физики: Fтр = -m N, где m - коэффициент трения, характеризующий свойства взаимодействующих поверхностей, а N - так называемая сила нормального давления . В отличие от сил вязкого трения эта сила не зависит от скорости движения тела. Сила вязкого трения, напротив, зависит от величины скорости, причем степень зависимости меняется по мере возрастания скорости. Для сравнительно небольших скоростей она может быть представлена в таком виде:

Fвяз = - bv = - . ( 2-13 )

Величина коэффициента b зависит как от свойств самого тела, которое движется в вязкой среде, так и от свойств среды. Иногда эту силу трения удобнее представлять в таком виде:

Fвяз = - kS , ( 2-14 )

где S - площадь соприкосновения тела со средой, k - коэффициент внутреннего трения среды, а величина производной, входящей в выражение для силы, носит название градиента скорости, описывающего быстроту изменения скорости слоев среды, увлекаемых телом, в направлении, перпендикулярном направлению скорости тела.

Практически важное значение имеет сила трения покоя , возникающая между соприкасающимися телами. Максимальную величину этой силы обычно оценивают по формуле для силы трения скольжения, хотя в действительности они несколько отличаются друг от друга.

§ 2- 5. Динамика вращательного движения материальной точки.

N

v

mg

r

Рис.9. Силы при
вращательном
движении.

Специфика такого движения состоит в том, что для его описания приходится прибегать к некоторым ухищрениям для выбора системы отсчета, в которых можно записать уравнение движения. Если выбирать обычную неподвижную систему координат, то направления скоростей и ускорения точки будут ежесекундно изменяться относительно координатных осей, что не совсем удобно. Поэтому оперируют с так называемой следящей системой координат, т.е. с такой системой,
начало которой неподвижно и совпадает в выбранный момент времени с движущейся материальной точкой, а направ-

ления ее осей совпадает с направлением скорости тела в этот момент времени и с
направлением радиуса вращения, проведенного в точку, где расположено тело в этот же момент времени. Важно отметить, что выбранная таким образом система
отсчета является неподвижной относительно инерциальной системы отсчета (на-пример, Земли), и в ней справедливы законы Ньютона.

Рассмотрим в качестве примера движение автомашины по выпуклому мосту, радиус которого r (см. рис.9) .Направим одну из осей следящей системы координат к центру моста, а другую - вдоль направления скорости v. Уравнение движения в этом случае имеет вид ( в проекции на вертикальную ось):

maц = mg - N, ( 2-15 )

где через N обозначена сила реакции моста, а mg - сила тяжести. Решая это уравнение относительно N, получаем :

N = mg - maц = m(g - ), ( 2-16 )

откуда следует, что при = g сила реакции моста будет равна 0 . Но это означает, что автомашина в этот момент времени не оказывает никакого давления на мост, т.е. она находится в состоянии невесомости.

Лекция 3 Динамика системы материальных точек.
§ 3 - 1. Центр масс системы материальных точек.

Y

m1

А ·

r1= l1 ·

R l2 · В

r2 m2

X

Рис.10. К опреде-
лению центра

масс.

Центром масс двух материальных точек А и В с массами m1 и m2 соответственно называется точка С, лежащая на отрезке, соединяющем А и В, на расстояниях l1 и l2 от А и В, обратно пропорциональных массам точек (см. рис.10.), т.е.

. ( 3-1 )

Если положения точек А и В задаются радиус-векторами r1 и r2 , то положение центра масс определяется радиусом - вектором R. Из рис.10 следует, что

R = r1 + l1 и R = r2 + l2 , ( 3-2 )

У множая первое из этих уравнений на m1, а второе - на m2 и складывая их, получим:

. ( 3-3 )

Из рис.10 и равенства ( 3-1 ) следует, что m2l2 = - m1l1. С учетом этого соотношения из выражения ( 3-3 ) можно определить значение радиуса - вектора R:

. ( 3-4 )

Обобщая это выражение для произвольного числа материальных точек, получим:

, ( 3-5 )

где = М - полная масса системы точек.

Скорость центра масс такой системы определяется дифференцированием ( 3-5 ):

. ( 3-6 )

Величины mivi представляют собой импульсы отдельных точек, поэтому урав-нение ( 3-6 ) можно переписать в следующем виде:

= Р, ( 3-7 )

г де через Р обозначен суммарный импульс системы. Дифференцируя ( 3-7 ), находим выражение для ускорения центра масс системы А:

. ( 3-8 )

§ 3 -2 Закон изменения импульса системы материальных точек.

Для простоты рассмотрим движение системы, состоящей из трех точек, на
каждую из которых действуют внутренние силы fik и внешние - Fi , где индекс i представляет номер точки. Уравнения движения для каждой точки имеют вид:

( 3-9 )

Складывая эти уравнения, получим:

( 3-10 )

По третьему закону Ньютона внутренние силы попарно равны по величине и противоположны по направлению ( например, f12 = -f21). Потому сумма всех внутренних сил равна нулю, и

, ( 3-11 )

где через Р обозначен суммарный импульс системы. Обобщая ( 3-11 ) для любого числа материальных точек, можно записать следующее выражение:

, ( 3-12 )

которое принято называть законом изменения импульса системы материальных точек. Как видно из этого выражения, изменение суммарного импульса определяется равнодействующей всех внешних сил, действующих на систему. Если же эта равнодействующая равна нулю ( или на систему не действуют никакие внешние силы), то суммарный импульс системы остается постоянным. Это следствие уравнения ( 3-12 ) называется законом сохранения импульса. Другим следствием рассмотренного закона изменения импульса служит теорема о движении центра масс, которая утверждает, что центр масс системы материальных точек под действием внешних сил движется как материальная точка суммарной массы, к которой приложены все внешние силы, и записывается в таком виде:

МА = . ( 3-13 )

Доказательство этого утверждения следует из сравнения определения ускорения центра масс( 3-8 ) и выражения ( 3-13 ).

Примерами закона сохранения импульса могут служить отдача при стрельбе из огнестрельного оружия, реактивное движение, перемещение осьминогов и т.п.

Лекция 4. Динамика твердого тела.

§ 4-1. Кинематические соотношения.

Твердое тело можно рассматривать как систему материальных точек, жестко скрепленных друг с другом. Отсутствие такого закрепления существенно затруднило бы описание движения всего конгломерата точек. Для полного описания движения одной точки необходимо знать ее три координаты, поэтому для N точек число необходимых координат , а следовательно, и число уравнений для их определения составило бы 3N. Так как число N может быть как угодно большим, то возможности строгого решения системы из 3N уравнений весьма ограничены.
Кроме того характер движения тела как целого может быть различным. Обычно различают поступательное, вращательное и плоское движения. При поступательном движении все точки тела движутся по параллельным траекториям, так что для описания движения тела в целом достаточно знать закон движения одной точки. В частности, такой точкой может служить центр масс твердого тела. В этом случае задача описания движения тела решается с помощью теоремы о движении центра масс. При вращательном движении все точки тела описывают концентрические окружности, центры которых лежат на одной оси. Скорости точек на любой из окружностей связаны с радиусами этих окружностей и угловой скоростью
вращения: vi = [w ri ]. Так как твердое тело при вращении сохраняет свою форму, радиусы вращения остаются постоянными и

= [ bri] . ( 4-1 )

§ 4-2. Определение момента силы.

Для описания динамики вращательного движения твердого тела необходимо ввести понятие момента силы. При этом надо различать понятия момента силы


M

O f

r a

A

Рис.11. Момент силы от-

носительно точки.

относительно точки и относительно оси. Если сила f приложена к материальной точке А(см. рис.11),то моментом силы М относительно произвольной точки О называется векторное произведение радиуса-вектора r, проведенного из точки О к точке А, и вектора силы:

М = [ r f ] . ( 4-2 )

Модуль векторного произведения = r f sin a, а на-

правление вектора М определяется правилом правого
буравчика: направление первого вектора r по кратчай-

шему пути вращается к направлению второго вектора f, а движение оси буравчика

z Mz

f

f

O f

r a

А

Рис.12. Момент силы от-
носительно оси.

при этом вращении показывает направление вектора М.

Моментом силы относительно произвольной оси z
называется векторное произведение радиуса-вектора r

и составляющей f силы f , приложенной в точке А:

М = [ r f ] , ( 4-3 )

где составляющая f представляет собой проекцию си-
лы f на плоскость, перпендикулярную оси z и проходящую через точку А , а r - радиус- вектор точки А, ле-

жащий в этой плоскости .

§ 4-3. Основное уравнение динамики вращательного движения.

О1

ri

mi

О2

Рис.13 Вращение

твердого тела.

Пусть имеется твердое тело произвольной формы (см. рис 13), которое может вращаться вокруг оси О1О2 . Разбивая тело на малые элементы, можно заметить, что все они вращаются вокруг оси О1О2 в плоскостях, перпендикулярных оси вращения с одинаковой угловой скоростью w. Движение каждого из отдельных элементов малой массы m описывается вторым законом Ньютона. Для i -го элемента имеем:

mi ai = fi1+ fi2 + ..... +fiN + Fi , ( 4-4 )

г де fik ( k = 1,2, ...N) представляют собой внутренние силы взаимодействия всех элементов с выбранным, а Fi - равнодействующая всех внешних сил, действующих на i - элемент. Скорость vi каждого элемента вообще говоря может меняться как угодно, но поскольку тело является твердым, то смещения точек в направлении радиусов вращения можно не рассматривать. Поэтому спроектируем уравнение ( 4-4 ) на направление касательной и умножим обе части уравнения на ri :

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
428
Средний доход
с одного платного файла
Обучение Подробнее