Texts on physics, maths and programming (Несколько текстов для зачёта), страница 28

2015-12-04СтудИзба

Описание файла

Файл "Texts on physics, maths and programming" внутри архива находится в папке "3". Документ из архива "Несколько текстов для зачёта", который расположен в категории "". Всё это находится в предмете "английский язык" из 5 семестр, которые можно найти в файловом архиве МГТУ им. Н.Э.Баумана. Не смотря на прямую связь этого архива с МГТУ им. Н.Э.Баумана, его также можно найти и в других разделах. .

Онлайн просмотр документа "Texts on physics, maths and programming"

Текст 28 страницы из документа "Texts on physics, maths and programming"

5.4. Differential equations

In this section, we discuss how the linear second order differential equations for various observables which arise from the stochastic aspect of SLE follow equivalently from the null state condition in CFT. In this context they are known as the BPZ equations [33]. As an example consider Schramm’s formula (30) for the probability P that a point ζ lies to the right of γ, or equivalently the expectation value of the indicator function which is 1 if this is satisfied and zero otherwise. In SLE, this expectation value is with respect to the measure on curves which connect the point a0 to infinity. In CFT, as explained above, we can only consider curves which intersect some -neighbourhood on the real axis. Therefore P should be written as a ratio of expectation values with respect to the CFT measure

(58)

We can derive differential equations for the correlators in the numerator and denominator by inserting into each of them a factor (1/(2πi)∫Γα (z)T (z) dz + c.c., where α (z) = 2/(za0), and Γ is a small semicircle surrounding a0. This is equivalent to making the infinitesimal transformation z → z + 2 /(z − a0). As before, the c.c. term is equivalent to extending the contour in the first term to a full circle. The effect of this insertion may be evaluated in two ways: by shrinking the contour onto a0 and using the OPE between T and 2,1 we get

(59)

while wrapping it about ζ (in a clockwise sense) we get

(60)

The effect on 2,1 (r2) vanishes in the limit r2 → ∞. As a result we can ignore the variation of the denominator in this case. Equating Figs. (59) and (60) inside the correlation function in the numerator then leads to the differential equation (29) for P found in Section 4.1.

5.4.1. Calogero–Sutherland model

While many of the results of SLE may be re-derived in CFT with less rigour but perhaps greater simplicity, the latter contains much more information which is not immediately apparent from the SLE perspective. For example, one may consider correlation functions 1,2 (r1) 1,2 (r2   2,1 (rN   of multiple boundary condition changing operators with other operators either in the bulk or on the boundary. Evaluating the effect of an insertion (1/2πi)∫Γ T (z) dz/(z − rj) where Γ surrounds rj leads to a second order differential equation satisfied by the correlation function for each j.

This property is very powerful in the radial version. Consider the correlation function

CΦ(θ1,…,θN)= 2,1(θ1) 2,1(θN)Φ(0)

(61)

of N 2,1 operators on the boundary of the unit disc with a single bulk operator Φ at the origin. Consider the effect of inserting (1/2πi)∫Γ αj (z)T (z) dz, where (cf. (26))

(62)

and Γ surrounds the origin. Once again, this may be evaluated in two ways: by taking Γ up to the boundary, with exception of small semicircles around the points eiθk, we get GjCΦ, where Gj is the second order differential operator

(63)

The first three terms come from evaluating the contour integral near eiθj, where αj acts like (the term comes from the curvature of the boundary), and the term with k ≠ j from the contour near eiθk, where it acts like .

On the other hand, shrinking the contour down on the origin we see that αj (z) = z + O (z2), so that on Φ (0) it has the effect of , where the omitted terms involve the Ln and with n > 0. Assuming that Φ is primary, these other terms vanish, leaving simply . Equating the two evaluations we find the differential equation

GjCΦ=xΦCΦ.

(64)

In general there is an (N − 1)-dimensional space of independent differential operators Gj with a common eigenfunction CΦ. (There is one fewer dimension because they all commute with the total angular momentum ∑j(∂/∂θj).) For the case N = 2, setting θ = θ2 − θ1, we recognise the differential operator in Section 4.3.3.

In general these operators are not self-adjoint and their spectrum is difficult to analyse. However, if we form the equally weighted linear combination , the terms with a single derivative may be written in the form ∑k(∂V/∂θk) (∂/∂θk) where V is a potential function. In this case it is well known from the theory of the Fokker–Plank equation that G is related by a similarity transformation to a self-adjoint operator. In fact [36] if we form |ΨN|2/κG|ΨN|−2/κ, where ΨN=j<k(eiθj-eθk) is the ‘free-fermion’ wave function on the circle, the result is, up to calculable constants the well-known N-particle Calogero–Sutherland hamiltonian

(65)

with β = 8/κ. It follows that the scaling dimensions of bulk operators like Φ are simply related to eigenvalues ΛN of HN by

(66)

where . Similarly CΦ is proportional to the corresponding eigenfunction. In fact the ground state (with conventional boundary conditions) turns out to correspond to the bulk N-leg operator discussed in Section 2.4.2. The corresponding correlator is |ΨN|2/κ.

6. Related ideas

6.1. Multiple SLEs

We pointed out earlier that the boundary operators 2,1 correspond to the continuum limits of lattice curves which hit the boundary at a given point. For a single curve, these are described by SLE, and we have shown in that case how the resulting differential equations also appear in CFT. Using the N-particle generalisation of the CFT results of the previous section, we may now ‘reverse engineer’ the problem and conjecture the generalisation of SLE to N curves.

The expectation value of some observable given that N curves, starting at the origin, hit the boundary at (θ1, … , θN) is

(67)

where . This satisfies the BPZ equation

(68)

where is the variation in under αj. If we now write and use the fact that GjF1 = xΦF1, we find a relatively simple differential equation for , since the non-derivative terms in Gj cancel. There is also a complication since the second derivative gives a cross term proportional to . However, this may be evaluated from the explicit form F1 = |ΨN|2/κ. The result is

(69)

where the right-hand side comes from the variation in .

The left-hand side may be recognised as the generator (the adjoint of the Fokker–Planck operator) for the stochastic process:

(70)

(71)

where ρk = 2. [For general values of the parameters ρk this process is known as (radial) , although this is more usually considered in the chordal version. It has been argued [37] that this applies to the level lines of a free gaussian field with piecewise constant Dirichlet boundary conditions: the parameters ρk are related to the size of the discontinuities at the points eiθk. has also been used to give examples of restriction measures on curves which are not reflection symmetric [38].]

We see that eiθj undergoes Brownian motion but is also repelled by the other particles at eiθk(kj): these particles are themselves repelled deterministically from eiθj. The infinitesimal transformation αj corresponds to the radial Loewner equation

(72)

The conjectured interpretation of this is as follows: we have N non-intersecting curves connecting the boundary points eiθk,0 to the origin. The evolution of the jth curve in the presence of the others is given by the radial Loewner equation with, however, the driving term not being simple Brownian motion but instead the more complicated process Figs. (70) and (71).

However, from the CFT point of view we may equally well consider the linear combination ∑jGj. The Loewner equation is now

(73)

where

(74)

This is known in the theory of random matrices as Dyson’s Brownian motion. It describes the statistics of the eigenvalues of unitary matrices. The conjectured interpretation is now in terms of N random curves which are all growing in each other’s mutual presence at the same mean rate (measured in Loewner time). From the point of view of SLE, it is by no means obvious that the measure on N curves generated by process Figs. (70), (71) and (72) is the same as that given by Figs. (73) and (74). However, CFT suggests that, for curves which are the continuum limit of suitable lattice models, this is indeed the case.

6.2. Other variants of SLE

So far we have discussed only chordal SLE, which describes curves connecting distinct points on the boundary of a simple connected domain, and radial SLE, in which the curve connects a boundary point to an interior point. Another simple variant is dipolar SLE [39], in which the curve is constrained to start at boundary point and to end on some finite segment of the boundary not containing the point. The canonical domain is an infinitely long strip, with the curve starting a point on one edge and ending on the other edge. This set-up allows the computation of several interesting physical quantities.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5304
Авторов
на СтудИзбе
416
Средний доход
с одного платного файла
Обучение Подробнее