63827 (Вейвлет-перетворення)

2016-08-01СтудИзба

Описание файла

Документ из архива "Вейвлет-перетворення", который расположен в категории "". Всё это находится в предмете "коммуникации и связь" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "коммуникации и связь" в общих файлах.

Онлайн просмотр документа "63827"

Текст из документа "63827"














Реферат з теми:

вейвлет-перетворення


Вступ

Математичні перетворення застосовують до сигналу для того, щоб одержати про нього якусь додаткову інформацію, недоступну у вихідному вигляді. Серед багатьох відомих перетворень сигналів найбільш популярним є перетворення Фур'є (ПФ).

Більшість сигналів, що зустрічаються на практиці, представлені в часовій області, тобто сигнал є функцією часу. Таким чином, при відображенні сигналу на графіку однієї з осей координат є вісь часу, а іншою координатою – вісь амплітуд. Отже, ми одержуємо амплітудно-часове подання сигналу. Для більшості додатків обробки сигналу це подання не є найкращим. У багатьох випадках найбільш значима інформація прихована в частотній області сигналу.

Частотний спектр є сукупністю частотних компонентів, він відображає наявність тих або інших частот у сигналі. Як відомо, частота вимірюється в Герцах [Гц], або в числі періодів у секунду. На рис. 1 приведені три синусоїди з частотою 3Гц, 10Гц та 50Гц. Порівняємо їх.

Рисунок 1 – Синусоїди з частотою 3Гц, 10Гц та 50Гц

Найчастіше інформація, не помітна в часовому поданні сигналу, виявляється при його частотному поданні. Розглянемо як приклад біологічний сигнал, наприклад, електрокардіограму (ЕКГ). Типовий вид ЕКГ добре відомий кардіологам. Будь-яке значне відхилення від нього розглядається як патологія. Ця патологія, однак, не завжди може бути помітна при часовому поданні сигналу. Тому в останніх моделях електрокардіографів для аналізу використовується й частотна область сигналу. Рішення про патологію виноситься тільки з використанням інформації частотної області.

Крім ПФ існує й багато інших часто застосовуваних перетворень сигналу. Прикладами є перетворення Гільберта, віконне ПФ, розподіл Вігнера, перетворення Уолша, вейвлет-перетворення й багато інших. Для кожного перетворення можна вказати найбільш підходящу область застосування, переваги й недоліки, і вейвлет-перетворення (ВП) не є в цьому випадку винятком.

Для кращого розуміння потреби у ВП розглянемо докладніше ПФ. ПФ (так, як і ВП) є зворотним утворенням, тобто з його коефіцієнтів за допомогою зворотного перетворення може бути отриманий вихідний сигнал. Однак тільки одне з представлень доступне для нас у кожний момент часу: частотну інформацію не можна витягти з часової, а часову – з частотної. Виникає природне запитанння: чи можливо одержати спільне частотно-часове подання сигналу?

Як буде показано, відповідь залежить від конкретного додатка й від природи сигналу. Нагадаємо, що ПФ подає частотну інформацію, яка міститься в сигналі, тобто говорить нам про те, який зміст кожної частоти в сигналі. Однак у який момент часу виникла та або інша частота, коли вона закінчилася – на ці запитання відповідь одержати не вдасться. Втім, ця інформація не потрібна, якщо сигнал – стаціонарний.

Стаціонарними називаються сигнали, частотне наповнення яких не змінюється в часі. Тому при частотному аналізі таких сигналів не потрібна часова інформація – всі частоти присутні в сигналі протягом усього часу.

Наприклад, сигнал:

x(t)cos(210t)cos(225t)cos(250t)cos(2100t)

є стаціонарним, оскільки частоти, які є в ньому, 10, 25, 50 й 100 Гц не змінюються в часі. Цей сигнал зображений нижче (рис. 2):

Рисунок 2 – Стаціонарний сигнал з частотами 10, 25, 50 та 100 Гц

А тут показано його ПФ:

Рисунок 3 – Частотний спектр сигналу, показаного на рис. 2

На верхньому графіку рис. 3 зображений частотний спектр сигналу, показаного на рис. 2. На нижньому графіку зображена його збільшена копія - діапазон частот, який цікавить нас. Зазначте, що чотири частотні компоненти відповідають частотам 10, 25, 50 та 100 Гц.

Розглянемо ще один приклад. На рис. 4 показаний сигнал, що складається з чотирьох різних частот, що зустрічаються на чотирьох різних інтервалах й, отже, є нестаціонарним. В інтервалі часу від 0 до 300 мс частота сигналу 100Гц, від 300 до 600 мс – 50Гц, від 600 до 800 мс – 25Гц і на останньому інтервалі – 10Гц.

Рисунок 4 – Сигнал, що складається з чотирьох різних частот

Рисунок 5 – Спектр (ПФ) сигналу, зображеного на рис. 4

Як видно з рисунка, всі чотири частотні компоненти чітко зображені. Відмітьте, що амплітуди високочастотних компонентів більші, ніж низькочастотних. Це пов'язане з тим, що їхня тривалість більша. ПФ має чотири піки, які відповідають чотирьом частотам, що присутні у сигналі.

Для першого сигналу, показаного на рис. 2, розглянемо таке питання: у який момент часу (або хоча б інтервал) виникла та або інша частота? Вони існують протягом усього часу. Нагадаємо, що в стаціонарних сигналах всі частотні компоненти присутні протягом усього часу. Тобто 10, 50, 100Гц присутні на всьому часовому інтервалі.

Тепер розглянемо те саме питання для нестаціонарного сигналу, показаного на рис. 4. У який час існують різні частоти? Зрозуміло, що не постійно. Однак, порівнявши спектри рис. 7 і рис. 9, ми не виявимо особливої різниці. На обох графіках видно чотири частотні складові 10, 25, 50 та 100Гц. Крім неоднаковості амплітуд піків, інших розбіжностей між спектрами немає, хоча вони відповідають різним сигналам у часовій області. Яким чином спектри двох настільки різних сигналів виявилися схожі? Існує така властивість ПФ, яка дозволяє побачити частотне наповнення сигналів, але не дозволяє визначити, в який момент часу існує та або інша частота. Тому ПФ непридатне для аналізу нестаціонарних сигналів, за одним винятком: ПФ може використовуватися для аналізу нестаціонарних сигналів, якщо нас цікавить лише частотна інформація, а час існування спектральних складових неважливий. У протилежному випадку треба шукати більш підходящий метод аналізу.

Якщо потрібна часова локалізація спектральних компонентів, необхідно звернутися до частотно-часового подання сигналу.


1. Віконне перетворення Фур'є

Припустимо, що нестаціонарний сигнал кусково-стаціонарний. Такий підхід одержав назву віконного (або короткочасного) перетворення Фур'є (ВПФ).

При ВПФ сигнал поділяється на відрізки («вікна»), у межах яких його можна вважати стаціонарним. Для цього до сигналу застосовується віконна функція w, ширина якої має дорівнювати ширині вікна. Нехай ширина віконної функції Т сек. Тоді в момент часу t=0 вона перекривається з Т сек сигналу. Віконна функція та сигнал перемножуються. Якщо віконна функція прямокутна і одиничної висоти, то сигнал не змінюється. У протележному випадку він зважується з віконною функцією. Потім добуток піддається перетворенню Фур'є. У результаті ми одержуємо ПФ перших Т сек вихідного сигналу. Якщо цей відрізок стаціонарний, як ми й припускали, то отриманий результат перетворення коректно відображає частотне наповнення перших Т сек сигналу.

Наступним кроком є зміщення віконної функції на деяку величину t сек. Функція із зміщенням знову множиться із сигналом, виконується ПФ результату множення. Ця процедура повторюється до досягнення кінця вихідного сигналу. Все вищесказане про ВПФ можна записати у такому вигляді:

,

де – вихідний сигнал, w( ) – віконна функція. Як видно з виразу, ВПФ є ні що інше, як ПФ сигналу, помноженого на віконну функцію. Отже, ми отримуємо істинне частотно-часове перетворення (ЧЧП) сигналу.

Розглянемо приклад. По-перше, оскільки наше перетворення є функцією як часу, так і частоти (на відміну від ПФ, що залежить тільки від частоти), то воно є двовимірним (а з урахуванням амплітуди, то й тривимірним). Нехай заданий нестаціонарний сигнал, наприклад, показаний на рис. 6. У цьому сигналі в різні моменти часу присутні різні частотні компоненти: від 0 дo 250мс – 300Гц, і, далі 200, 100 й 50Гц. Погляньте на ВПФ цього нестаціонарного сигналу на рис. 7:

Рисунок 6 – Заданий нестаціонарний сигнал

Рисунок 7 – ВПФ нестаціонарного сигналу

Це тривимірний графік. По осях «x» та «y» відкладені час і частота, відповідно. Розглянемо огинаючу частотно-часового подання. На графіку чітко виражені чотири піки, які відповідають чотирьом частотним компонентам. На відміну від ПФ, ці піки локалізовані в різних часових інтервалах. Отже, тепер ми маємо істинне частотно-часове подання сигналу. Ми не тільки знаємо, які частотні компоненти присутні в сигналі, але й у який момент часу вони зустрічаються.

Якщо ВПФ дає частотно-часове подання сигналу, то для чого ж нам вейвлет-перетворення? Властивий ВПФ недолік не видно з розглянутого прикладу.

Проблеми ВПФ мають свої корені у явищі, що називається принципом невизначеності Гейзенберга. Цей принцип свідчить, що неможливо одержати довільно точне частотно-часове подання сигналу, тобто не можна визначити для якогось моменту часу, які спектральні компоненти присутні в сигналі. Єдине, що ми можемо знати, так це часові інтервали, протягом яких у сигналі існують смуги частот. Ця проблема називається проблемою розрізнювання.

Проблема ВПФ пов'язана з шириною віконної функції, що використовується. Ця ширина називається носієм функції. Якщо вікно досить вузьке, то говорять про компактний носій. Як побачимо надалі, ця термінологія особливо широко використовується в теорії вейвлет-перетворень.

Часова інформація при ПФ відсутня. При ВПФ вікно має кінцеву довжину, накриває тільки частину сигналу, тому частотне розрізнювання погіршується. Отже, чим вужче вікно, тим краще часове розрізнювання, але гірше частотне. І навпаки. Крім того, чим вужче вікно, тим більш справедливими стають наші припущення про стаціонарність сигналу в межах вікна.

Для того, щоб спостерігати ці ефекти, звернемося до прикладів. Розглянемо чотири вікна різної ширини. Як віконну функцію використовуватимемо функцію Гауса, що має вигляд:

,

де a визначає ширину вікна, а t – час. На рис. 8 показані чотири вікна різної ширини, обумовленої значенням a.

Розглянутий раніше приклад був розрахований при значенні a=0.001. Тепер розглянемо ВПФ тих самих сигналів при іншому значенні ширини вікна.

Рисунок 8 – Чотири вікна різної ширини

Рисунок 9 – ВПФ при вузькому значенні ширини вікна

Для початку використаємо перше, найвужче вікно. Ми можемо очікувати добре розрізнювання за часом, але погане за частотою (рис. 9). Зазначимо, що чотири піки, показані на рисунку, добре розділені за часом. Також зазначимо, що в частотній області кожен пік накриває діапазон частот, а не одну якусь частоту. Тепер збільшимо ширину вікна й подивимося на наступний рисунок 10.

Рисунок 10 – ВПФ при збільшеному широкому значенні ширини вікна

Як видно з рисунка, піки тепер не настільки добре розділені за часом.

Однак частотне розрізнювання покращилось. Збільшимо ще ширину вікна (рис. 11):

Рисунок 11 – ВПФ при широкому значенні ширини вікна

Як і очікувалося, часове розрізнювання значно погіршилося.

Наведені приклади показали проблему розрізнювання, властиву ВПФ. Тому при застосуванні ВПФ завжди виникають питання: який вид вікна використати? Вузьке вікно забезпечує краще часове розрізнювання, а широке – краще частотне. Проблема полягає в тому, що доводиться вибирати вікно «раз і назавжди», тобто для аналізу всього сигналу, тоді як різні його відрізки можуть вимагати застосування різних вікон. Якщо сигнал складається з далеко віддалених один від одного частотних компонентів, то можна пожертвувати спектральним розрізнюванням на користь часового й навпаки.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее