ПОлный комплек (Шпаргалки), страница 8

2013-08-20СтудИзба

Описание файла

Файл "ПОлный комплек" внутри архива находится в папке "shpory". Документ из архива "Шпаргалки", который расположен в категории "". Всё это находится в предмете "материаловедение" из , которые можно найти в файловом архиве МГТУ им. Н.Э.Баумана. Не смотря на прямую связь этого архива с МГТУ им. Н.Э.Баумана, его также можно найти и в других разделах. Архив можно найти в разделе "к экзамену/зачёту", в предмете "материаловедение" в общих файлах.

Онлайн просмотр документа "ПОлный комплек"

Текст 8 страницы из документа "ПОлный комплек"

Рис. 9.2. Зависимость темпе­ратуры начала (Мн) и конца (MJ мартенситного превра­щения от содержания угле­рода в стали

Термокинетическая диаграмма - важная характеристика, позволяющая предсказывать вид фазового превращения и возможную структуру стали в зависимости от скорости ее охлаждения. Итак, при охлаждении стали со скоростью, большей Vкр.- неравновесная фаза - пересыщенный твердый раствор внедрения углерода в Fе(альфа). Кристаллы мартенсита, имея пластинчатую форму, растут с огромной скоростью, равной скорости звука в стали (примерно 5000м/с). Их росту препятствует граница зерна аустенита или ранее образовавшаяся пластина мартенсита. Происходит закономерная перестройка решетки, при которой атомы не обмениваются местами, а лишь смещаются на расстояния, не превышающие межатомные. При этом перестройка происходит по тем кристаллографическим плоскостям исходной модификации, которые по строению одинаковы, а по параметрам близки к определенным плоскостям кристаллической решетки образующей фазы, т.е. выполняется принцип структурного и размерного соответствия. Для мартенситного превращения характерно, что растущие кристаллы мартенсита когерентно связаны с кристаллами исходной фазы (соприкасаются по той поверхности кристалла, которая является общей для их кристаллических решеток). При нарушении когерентности решеток интенсивный упорядоченный переход атомов из аустенита в мартенсит становится невозможным, и рост кристалла мартенсита прекращается. Мартенсит имеет тетрагональную пространственную решетку. Свойства мартенсита сталей

от количества растворенного в нем углерода. Мартенсит имеет очень высокую твердость, равную или превышающую 60HRC, при содержании углерода, большем 0.4%. С увеличением количества углерода возрастает хрупкость мартенсита. Мартенситное превращение в сталях сопровождается заметным увеличением объема, меняются и другие физические свойства стали.

Рис. 9.1. Термокинетаческая диаграмма стали 45

Доэвтектоидные стали подвергают полной закалке: опти­мальной является температура нагрева, превышающая точку /Цrfa 30...50°С Заэвтектоидные стали подвергают неполной закал­ке: оптимальной является температура нагрева, превышающая точку Af. на 30...50°С зависят (рис. 9.4). При неполной закалке заэвтектоидной стали в структуре сохраняется цементит, который по­вышает твердость и износостойкость. Неполная закалка для до-эвтектоидной стали не рекомендуется, так как зерна избыточ­ной фазы феррита понижают твердость стали. Для получения однородного аустенита к моменту охлаждения при закалке нуж­на определенная выдержка.


Рис. 9.4. Оптимальные температуры нагрева под закалку для довтектоиндных и заэвтектоидных сталей: Ф - Феррит, А - аустеннт; Цц - вто­ричный цементит; П — перлит


2)Сравнительная характеристика антифрикционных материалов: баббитов, бронз, алюминиевых сплавов, многослойных подшипников.

Антифрикционные материалы (пористость 15... 30 %), широко применяющиеся для изготовления подшипников скольжения, представляют собой пористую основу, пропитанную маслом. Масло поступает из пор на поверхность, и подшипник становится самосмазывающимся, не требуется подводить смазку извне. Это существенно для чистых производств (пищевая, фармацевтическая отрасли). Такие подшипники почти не изнашивают поверхность вала, шум в 3... 4 раза меньше, чем от шариковых подшипников.

Подшипники работают при скоростях трения до 6 м/с при нагрузках до 600 МПа. При меньших нагрузках скорости скольжения могут достигать 20...30 м/с. Коэффициент трения подшипников - 0,04... 0,06.

Для изготовления используются бронзовые или железные порошки с добавлением графита (1... 3 %). Разработаны подшипниковые спеченные материалы на основе тугоплавких соединений (боридов, карбидов и др.), содержащие в качестве твердой смазки сульфиды, селениды и гексагональный нитрид бора. Подшипники могут работать в условиях вакуума и при температурах до 500°С.

Применяют металлопластмассовые антифрикционные материалы: спеченные бронзографиты, титан, нержавеющие стали пропитывают фторопластом. Получаются коррозионностойкие и износостойкие изделия. Срок службы металлопластмассовых материалов вдвое больше, чем материалов других типов.

Фрикционные материалы (пористость 10... 13 %) предназначены для работы в муфтах сцепления и тормозах. Условия работы могут быть очень тяжелыми: трущиеся поверхности мгновенно нагреваются до 1200°С, а материал в объеме - до 500... 600°С. Применяют спеченные многокомпонентные материалы, которые могут работать при скоростях трения до 50 м/с на нагрузках 350.. .400 МПа. Коэффициент трения при работе в масле - 0,08.. .0,15, при сухом трении - до 0,7.

По назначению компоненты фрикционных материалов разделяют на группы:

а) основа - медь и ее сплавы - для рабочих температур 500... 600°С, железо, никель и
сплавы на их основе - для работы при сухом трении и температурах 1000... 1200°С;

б) твердые смазки - предотвращают микросхватывание при торможении и
предохраняют фрикционный материал от износа; используют свинец, олово, висмут,
графит, сульфиты бария и железа, нитрид бора;

в) материалы, обеспечивающие высокий коэффициент трения - асбест, кварцевый
песок, карбиды бора, кремния, хрома, титана, оксиды алюминия и хрома и др.

Примерный состав сплава: медь - 60... 70 %, олово - 7 %, свинец - 5 %, цинк -5... 10%, железо - 5... 10 %, кремнезем или карбид кремния - 2... 3 %, графит - 1... 2 %.

Из фрикционных материалов изготавливают тормозные накладки и диски. Так как прочность этих материалов мала, то их прикрепляют к стальной основе в процессе изготовления (припекают к основе) или после (приклепывают, приклеивают и т.д.).

Билет 16

1)Самопроизвольная и несамопроизвольная кристаллизация. Критический размер зародыша. Способы измельчения зерна литого металла. Строение слитков.

Первичная кристаллизация – переход металла из жидкого или парообразного состояния в твердое с образованием кристаллической структуры.

Вторичная кристаллизация – образование новых кристаллов в твердом кристаллическом веществе.

Процесс кристаллизации – зарождение и рост кристаллов.

Самопроизвольная кр. обусловлена стремлением вещества иметь более устойчивое состояние, характеризуемое уменьшением термодинамического потенциала G. Температура, при кот. Термодинамические потенциалы вещества в твердом и жидком состояниях равны, называется равновеной температурой кристаллизации. Кристаллизация проходит в том случае, если термодин. Потенциал вещества в твердом состоянии будет меньше термодинам. Потенциала вещества в жидком состоянии, т.е. при переохлаждении жидкого металла до темеператур ниже равновесной.

Самопроизвольная кристаллизация – процесс, который происходит в веществах под действием естественных механизмов без посторонних вмешательств. Формула Fсв = UTS означает, что для каждого агрегатного состояния может быть написано уравнение, определяющее изменение внутренней энергии в зависимости от температуры.

При высоких температурах по принципу минимальной свободной энергии энергетически более выгодно жидкое агрегатное состояние, при низких – твердое.

T0 – теоретическая температура кристаллизации – температура, при которой уровни свободной энергии жидкости и твердого состояния одинаковы. При температуре кристаллизации вещество находится в безразличном состоянии. 00С – теоретическая температура кристаллизации воды. Для начала кристаллизации необходимо, чтобы Tд<T0, где Tд – действительная температура начала кристаллизации.

Важнейшая характеристика процесса кристаллизации – степень переохлаждения: T = T0 Tд. Начало кристаллизации при T<T0 сопровождается образованием внутри жидкости мельчайших зародышей кристаллов, то есть небольших групп атомов, располагающихся фиксировано друг относительно друга и образующих кристаллическую решетку.

При образовании кристаллической решетки происходят следующие процессы:

1) Уменьшение свободной энергии при T<T0 за счет образования кристаллической решетки, так как кристаллообразное состояние более выгодно.

2) Увеличение свободной энергии за счет образования поверхности раздела между жидкостью и кристаллом. Возникновение поверхности натяжения. Устойчивым будет тот кристалл, для которого уменьшение свободной энергии больше чем ее увеличение.

rкр – критический радиус кристалла.

rкр1 < rкр2 означает, что при некоторой температуре T2 начальный объем зародыша должен быть больше, следовательно вероятность его самопроизвольного развития меньше. Чем меньше степень переохлаждения, тем меньше зародышей кристаллов образуется в единице объема жидкости за единицу времени.

З ависимость числа зародышей кристаллов и скорости их роста от степени переохлаждения.

Чем больше T = T0 Tд, тем меньше Tд. При T1 – число зародышей мало, скорость роста отлична от нуля. В результате кристаллы вырастают до крупных размеров. При T2 – число зародышей резко возрастает, скорость роста увеличивается, но кристаллы из-за большого количества не успевают вырасти до крупных размеров (структура из мелких кристаллов).

Чем мельче кристаллы в структуре металла, тем выше прочность и твердость, меньше пластичность. Для малых объемов металла T можно изменять за счет изменения скорости охлаждения.

Для крупных слитков это неприемлемо, так как внутренние слои слитка будут охлаждаться с малой скоростью. Если охлаждать слиток снаружи, то обнаружится существенная неоднородность структуры слитка.

При охлаждении слитка возникает существенная разность температур, которая приводит к возникновению дендритных кристаллов (древовидные кристаллы). Они имеют оси, вызывающие сильную неоднородность свойств металла. Наличие крупных дендритных кристаллов является литейным браком.

Несамопроизвольная кристаллизация – происходит при температурах ниже T0 с участием специальных веществ. Они влияют на размер и форму кристалла и называются модификаторы. Процесс влияния – модифицирование.

Выделяют два вида модификаторов объемные и поверхностные. Объемные модификаторы создают дополнительные центры кристаллизации. Тугоплавкие металлы в виде мелкодисперсного порошка. Необходимо, чтобы металл имел аналогичные кристаллические решетки и атомные параметры. Для железа модификатор – вольфрам. Поверхностные модификаторы уменьшают скорость роста кристаллов, изменяют поверхностную энергию на границе кристалл-жидкость. Атомы модификатора прилипают к поверхности кристалла, новые кристаллы не растут. В качестве модификатора используются неметаллы с малой атомной массой. Для железа модификатор – бор. Модификаторы позволяют улучшить структуру металла и управлять размерами и формой кристаллов.

Строение слитков.

р асположенных нормально к стенкам формы. Наконец, в середине слитка, гле наблюдается наименьшая степень переохлаждения и не ощущается направленного отвода теплоты, образуются равноосные кристаллы больших размеров.


2)Конструкционные материалы малой плостности: алюминевые деформируемые сплавы упрочняемые и не упрочняемые термической обработкой, их состав, марки и применение.

Материалы с малой плотностью (легкие материалы) широко используются в авиации, ракетной и космической технике, а также в автомобилестроении, судостроении, строительстве и других отраслях промышленности.

Алюминий – металл серебристо-белого цвета. Он не имеет полиморфных превращений и кристаллизуется в решетке ГЦК с периодом a=0.4041нм.

Алюминий обладает малой плотностью, хорошими теплопроводностью и электрической проводиостью, высокой пластичностью и коррозионной стойкостью. Примеси ухудшают все эти свойства алюминия.

Постоянные примеси алюминия – Fe, Si, Cu, Zn, Ti.

В зависимости от содержания примесей подразделяют на три класса:

1) особой чистоты А999 (<= 0.001% примесей); 2) высокой чистоты А995, А99, А97, А95 (0.005 – 0.05% примесей) и технической чистоты А85, А8 и др. (0.15 – 1% примесей). Технический маркируют – АД0 и АД1.

В виду низкой прочности алюминий применяют для ненагруженных деталей и жлементов конструкций, когда от материала требуется легкость, свариваемость, пластичность. (рамы, двери, трубопроводы, фольга, цистерны для перевозки нефти и нефтепродуктов, посуда ит.д.). Высокая электрическая проводимость – широкое применение для конденсаторов, проводов, кабелей, шин и т.п. Высокая отражательная способность – прожекторы, рефлекторы, экраны телевизоров. Имеет малое эффективное поперечное сечение захвата нейтронов, хорошо обрабатывается давлением, сваривается газовой и контактной сваркой, плохо обрабатывается резанием. Имеет большую усадку при затвердевании (6%).Высокая теплота плавления и теплоемкость способствуют медленному остыванию алюминия из жидкого состояния, что дает возможность улучшать отливки из алюминия и его сплавов путем модифицирования, рафинирования и других технологических операций.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее