ПОлный комплек (Шпаргалки), страница 4

2013-08-20СтудИзба

Описание файла

Файл "ПОлный комплек" внутри архива находится в папке "shpory". Документ из архива "Шпаргалки", который расположен в категории "". Всё это находится в предмете "материаловедение" из , которые можно найти в файловом архиве МГТУ им. Н.Э.Баумана. Не смотря на прямую связь этого архива с МГТУ им. Н.Э.Баумана, его также можно найти и в других разделах. Архив можно найти в разделе "к экзамену/зачёту", в предмете "материаловедение" в общих файлах.

Онлайн просмотр документа "ПОлный комплек"

Текст 4 страницы из документа "ПОлный комплек"

Сорероидизация, применяется для заэвтектоидных сталей (С>0,8%). Цель – образование сферического цементита.

Исчезает цементный скелет. Кристаллы цементита приобретают правильную сферическую форму. Результат – улучшение механических свойств металла, уменьшение хрупкости, увеличение вязкости.

2) Закалка – вид термической обработки, заключающийся в нагреве стали выше критической температуры (структура аустенит), выдержки при этой температуре и охлаждении со скоростью выше критической (структура мартенсит). Цель: повышение твердости и прочности стали.

Критическая скорость охлаждения – минимальная скорость охлаждения стали, при которой не происходит распада аустенита с образованием перлита (t = 727° C).

При охлаждении со скоростью vкр кривая охлаждения касательна к линии начала распада А. При скорости v1<vкр – низкая скорость охлаждения – идет процесс распада А, закалки не происходит. При v2>vкр – происходит закалка с образованием мартенсита. При v3<vкр происходит неполная закалка, часть кристаллов А распадается, часть – превращается в мартенсит.

Выбор температуры нагрева стали под закалку.

Условия выбора:

1) Образование аустенитной структуры должно пройти полностью за относительно непродолжительное время.

2) Не должно происходить увеличения размеров зерна аустенита вследствие нагрева.

Результаты закалки при разных условиях:

1) Температура выше оптимальной: превращение происходит быстро, увеличиваются размеры кристаллов аустенита, следовательно возможно ухудшение свойств закаленной стали.

2) Температура оптимальная: превращение происходит быстро, результат качественный.

3) Температура ниже оптимальной: Закалка возможна, но недопустимо сильно увеличивается время выдержки.

4) Температура ниже критической: Аустенит образуется частично. Результат – неполная закалка.

Интервал температур определен экспериментально. Для заэвтектоидных сталей температура нагрева на 20–50° C выше линии SK. Причина: углерод как легирующий элемент способствует повышению устойчивости аустенита.

Для заэвтектоидных сталей закалка с температурой выше линии SK приводит к высокому содержанию углерода в аустените. После закалки при низких температурах в структуре находится много остаточного аустенита, как следствие уменьшается твердость.После закалки при температуре на 20–50° C выше линии SK, избыточный углерод остается в виде цементита, содержание углерода в аустените пониженное, аустенит практически полностью превращается в мартенсит. Влияние остаточного аустенита компенсируется высокой прочностью и твердостью вторичного цементита.

Способность стали к закалке.

1) Закаливаемость – способность стали существенно изменять свои свойства после закалки. Зависит от содержания углерода в стали (С > 0,25%).

2) Прокаливаемость – способность стали образовывать мартенсит при низких критических скоростях охлаждения. Чем ниже скорость, тем выше прокаливаемость, тем толще поверхностный слой закаленного металла.

2)Закономерности усталостного разрушения в условиях высоких контактных нагрузок. Стали для зубчатых колес. Состав, марки, упрочняющая обработка.

Причина изнашивания сопряженных деталей работа сил трения. Под действием этих сил происходит многократное деформирование участков контактной поверхности, их упрочнение и разупрочнение, выделение теплоты, изменение структуры, развитие процессов усталости, окисления и др.

1 - упругое контактирование; 2 - пластическое деформирование; 3 - микрорезание; 4 - схватывание и разрушение поверхностных пленок; 5 - схватывание и глубинное вырывание

связи).

Возможны два вида адгезионного взаимодействия:

1) схватывание и разрушение поверхностных пленок

2) схватывание металлических поверхностей, сопровождающееся заеданием, т. е. глубинным вырыванием

Закономерносш изнашивания деталей, образующих пары трения, и пути уменьшения их износа При первом виде взаимодействия срез адгезионных связей происходит по оксидным или адсорбированным пленкам, которыми всегда покрыты трущиеся поверхности. Скорость образования оксидных пленок обычно высока, чему способствуют высокие температуры, развивающиеся на поверхностях трения. Разрушение поверхности путем среза оксидных пленок называется окислительньм изнашиванием. Это наиболее благоприятный вид изнашивания, при котором процессы разрушения локализуются в тончайших поверхностных слоях.

Схватывание металлических поверхностей возникает между чистыми от пленок (юве-нильными) поверхностями трения, например, в условиях вакуума или при разрушении пленок пластической деформацией в местах контакта. Между очищенными участками образуются адгезионные связи, которые по прочности превосходят прочность одного из материалов пары трения. Срез происходит в менее прочном материале в глубине от места схватывания. На одной поверхности трения образуются углубления, на другой-вырванные частицы, которые повторно схватываются и бороздят трущиеся поверхности, вызывая их интенсивное разрушение, а иног-

В зависимости от условий трения, при которых пластическая деформация разрушает оксидные пленки, различают две разновидности схватывания: холодное (I рода) и тепловое (II рода).

а из-за большого тепловыделения и сваривание. Разрушение поверхностей трения при схватывании (заедании) называют адгезионным изнашиванием. Это наиболее опасный и быстротечный вид изнашивания, который служит главной причиной отказа в работе многих узлов трения.

Молекулярно-механическая теория трения определяет два основных пути повышения износостойкости материала: 1) увеличение твердости трушейся поверхности; 2) снижение прочности адгезионной связи.

Повышение твердости направлено на то, чтобы затруднить пластическую деформацию и исключить микрорезание поверхностей трения, обеспечив по возможности упругое деформирование участков контакта.

Снижение прочности адгезионной связи необходимо для предупреждения схватывания металлических поверхностей. Наиболее эффективно эта цель достигается разделением поверхностей трения жидким, твердым (иногда газовым) смазочным материалом. При использовании жидкостной смазки, когда поверхности деталей разделены несущим гидродинамическим слоем, коэффициент трения минимален (0,005-0,01), а износ практически отсутствует.

Твердая смазка обеспечивает более высокий коэффициент трения (0,02-0,15). Она незаменима для узлов трения, способных работать в вакууме, при высоких температурах и других экстремальных условиях. Из твердых смазочных материалов наиболее широко применяют графит и дисульфид молибдена (MoSj), имеющих слоистое строение.

Использование смазочных материалов, однако, не гарантирует от схватывания. Твердые смазочные материалы постепенно изнашиваются. Условия жидкостной смазки нарушаются из-за неблагоприятных режимов работы механизмов. К ним относятся периоды приработки, а также пуска и остановок машин. В этих случаях возникает гра-

ничное трение, при котором поверхности разделяются лишь тонкой масляной пленкой. Контактные напряжения и нагрев способны разрушать эту пленку и вызывать схватывание. В этих условиях решающее значение приобретает обеспечение совместимости трущейся пары. Под совместимостью понимают свойство материалов предотвращать схватьшание при работе без смазочного материала или в условиях нарушения сплошности масляного слоя. Совместимость достигается несколькими способами.

1. Использованием защитных свойств оксидных пленок. Защитные свойства оксидных пленок зависят от их состава, толщины, а также от свойств металлической подложки, увеличиваясь с ростом ее твердости. Если оксид тверд и прочен, а нижележащий металл мягок, то пленка легко разрушается, и схватывание развивается при малой нагрузке.

2. Подбором материалов пары трения. Схватывание особо опасно для контакта из двух твердых материалов. В случае разрушения защитных оксидных пленок оно приводит к значительному повреждению обеих поверхностей трения. При сочетании твердого и мягкого материалов схватывание проявляется в менее опасной форме.

3. Разделением поверхностей трения пленками полимеров (фторопласта, полиамида и т. п.), которые отличаются

НИЗКОЙ адгезией к металлам. Кроме того, под влиянием теплоты трения полимеры способны переходить в низкомолекулярное состояние и образовывать пленку с низким сопротивлением сдвигу. В силу этих особенностей полимеры имеют низкий коэффициент трения, слабо изменяющийся при применении смазочного материала.

Работоспособность многих узлов трения зависит от скорости развития поверхностного усталостного выкрашивания (питтинга).

Стали для зубчатых колес. Основным эксплуатационным свойством смазываемых колес, так же как и подшипников качения, является контактная выносливость. Она определяет габариты зубчатой передачи и ресурс ее работы. Кроме высокой контактной выносливости от зубчатых колес требуется сопротивление усталости при изгибе, износостой-

кость профилей и торцов зубьев, устойчивость к схватыванию. Наиболее полно этим требованиям удовлетворяют стали, имеющие твердый поверхностный слой, вязкую и достаточно прочную сердцевину, способную противостоять действию ударных нагрузок. Сочетание твердой поверхности и вязкой сердцевины достигается химико-термической обработкой или повфх-ностной закалкой низко- и среднеуглеродистых сталей. Выбор стали и метода упрочнения зависит от условий работы зубчатой передачи, требований технологии и имеющегося оборудования.

Для зубчатых колес, работающих при высоких контактных нагрузках, применяют цементуемые (нитроцементуемые) легированные стали (см. табл. 8.4). Они имеют наиболее высокий предел контактной выносливости, величина которого согласно ГОСТ 21354-75 определяется пропорционально твердости поверхности (табл. 10.2).

Твердость цементованной поверхности при концентрации углерода 0,8-1,4% и структуре, состоящей из вы-сокоуглеродисгого мартенсита или его смеси с дисперсными карбидами, составляет HRC 58-<)3. Излишне высокая твердость нежелательна из-за возможности хрупкого разрушения цементованного слоя. При постоянной твердости поверхности контактная выносливость растет с увеличением толщины упрочненного слоя и твердости сердцевины. Толщина цементованного слоя принимается равной (0,20-0,26) т (т-мо-дуль колеса), но не более 2 мм. Твердость сердцевины составляет HRC 30-42.

Сильно нагруженные зубчатые колеса диаметром 150-600 мм и более изготовляют из хромоникелевых сталей 20ХНЗА, 12Х2Н4А, 18Х2Н4МА и др. Их используют в редукторах вертолетов, судов, самолетов. Для мелких и средних колес приборов, сельскохозяйственных машин применяют хромистые стали 15Х, 15ХФ, 20ХР и др.

Билет9

1)Закалка сталей. Оптимальная температура закалки углеродистых сталей. Влияние легирующих элементов на критическую скорость закалки. Внутренние напряжения в закаленных сталях.

Конструкционные стали подвергают закалке и отпуску для повышения прочности и твердости, получения высокой пластичности, вязкости и высокой износостойкости, а инструментальные – для повышения твердости и износостойкости.

Основными параметрами являются температура нагрева и скорость охлаждения. Продолжительность нагрева зависит от нагревательного устройства, по опытным данным на 1 мм сечения затрачивается: в электрической печи – 1,5…2 мин.; в пламенной печи – 1 мин.; в соляной ванне – 0,5 мин.; в свинцовой ванне – 0,1…0,15 мин.

По температуре нагрева различают виды закалки:

полная, с температурой нагрева на 30…50oС выше критической температуры А3

.

Применяют ее для доэвтектоидных сталей. Изменения структуры стали при нагреве и охлаждении происходят по схеме:

.

Неполная закалка доэвтектоидных сталей недопустима, так как в структуре остается мягкий феррит.

Изменения структуры стали при нагреве и охлаждении происходят по схеме:

неполная с температурой нагрева на 30…50 oС выше критической температуры А1

Применяется для заэвтектоидных сталей. Изменения структуры стали при нагреве и охлаждении происходят по схеме: .

После полной закалки заэвтектоидных сталей получают дефектную структуру грубоигольчатого мартенсита. Заэвтектоидные стали перед закалкой обязательно подвергают отжигу – сфероидизации, чтобы цементит имел зернистую форму.

Охлаждение при закалке. Для получения требуемой структуры изделия охлаждают с различной скоростью, которая в большой степени определяется охлаждающей средой, формой изделия и теплопроводностью стали. Режим охлаждения должен исключить возникновение больших закалочных напряжений. При высоких скоростях охлаждения при закалке возникают внутренние напряжения, которые могут привести к короблению и растрескиванию. Внутренние напряжения, уравновешиваемые в пределах макроскопических частей тела, называются напряжениями I рода. Они ответственны за искажение формы (коробление) и образование трещин при термообработке. Причинами возникновения напряжений являются:

  • различие температуры по сечению изделия при охлаждении;

  • разновременное протекание фазовых превращений в разных участках

Закаливаемость – способность стали приобретать высокую твердость при закалке.

Закаливаемость определяется содержанием углерода. Стали с содержанием углерода менее 0,20 % не закаливаются. Прокаливаемость – способность получать закаленный слой с мартенситной и троосто-мартенситной структурой, обладающей высокой твердостью, на определенную глубину.За глубину закаленной зоны принимают расстояние от поверхности до середины слоя, где в структуре одинаковые объемы мартенсита и троостита. Чем меньше критическая скорость закалки, тем выше прокаливаемость. Укрупнение зерен повышает прокаливаемость.

Если скорость охлаждения в сердцевине изделия превышает критическую то сталь имеет сквозную прокаливаемость. Нерастворимые частицы и неоднородность аустенита уменьшают прокаливаемость. Характеристикой прокаливаемости является критический диаметр. Критический диаметр – максимальное сечение, прокаливающееся в данном охладителе на глубину, равную радиусу изделия. С введением в сталь легирующих элементов закаливаемость и прокаливаемость увеличиваются (особенно молибден и бор, кобальт – наоборот).

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее