rom-0118 (664263)

Файл №664263 rom-0118 (Получение уравнения переходного процесса по передаточной функции)rom-0118 (664263)2016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ ЗАДАНИЯ 5.

ПОЛУЧЕНИЕ УРАВНЕНИЯ ПЕРЕХОДНОГО ПРОЦЕССА

ПО ПЕРЕДАТОЧНОЙ ФУНКЦИИ.

ЦЕЛЬ. Научиться определять уравнение переходного процесса по изображению регулируемого параметра по Лапласу.

ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ.

Построение переходного процесса является завершающим этапом исследования автоматической системы. По полученному графику переходного процесса при единичном воздействии можно наглядно определить основные показатели качества регулирования - время регулирования, перерегулирование, установившуюся ошибку.

Пусть нам известны:

Wy(p) - передаточная функция системы по управлению;

Wf(p) - передаточная функция системы по возмущению;

U(p) - управляющий сигнал;

f(p) - возмущающий сигнал.

Тогда изображение по Лапласу регулируемого параметра будет:

x(p)=Wy(p)*U(p) + Wf(p)*f(p).

Вначале рассмотрим случай, когда на систему действует управляющий сигнал U(p), а возмущающее воздействие f(p)=0:

x(p)=Wy(p)*U(p)= .

Таким образом для получения изображения по Лапласу регулируемой координаты необходимо передаточную функцию (ПФ) умножить на изображение по Лапласу входного воздействия.

Согласно таблице 1 задания 4 для входного воздействия в виде одиночного импульса U(t)=1’(t) изображение U(p)=1, для входного воздействия в виде единичного скачка U(t)=1(t) изображение U(p)=.

Рассмотрим несколько примеров получения уравнения переходного процесса по известной передаточной функции.

ПРИМЕР 1. Входное воздействие - единичный импульс U(t)=1’(t).

Передаточная функция:

W(p)= .

Определить уравнение весовой функции.

РЕШЕНИЕ.

  1. Определяем изображение по Лапласу регулируемого параметра x(p), учитывая, что U(p)=1.

x(p)=W(p)*U(p)= .

  1. Определяем корни характеристического уравнения.

p=

  1. Преобразуем выражение x(p) согласно формуле №8 табл.1 (задания 4).

x(p)= .

  1. Определяем уравнение весовой функции по формуле №8.

x(t)=4*e-2t*sin(6t).

ПРИМЕР 2. Дана следующая ПФ:

x(p)=

Определить уравнение весовой функции.

РЕШЕНИЕ.

  1. Определяем изображение по Лапласу регулируемого параметра.

x(p)=

  1. Корни характеристического уравнения.

p1,2= -2j3.

  1. Преобразуем выражение x(p) согласно формулам №8 и №9.

x(p)=

  1. Определяем уравнение весовой функции по формулам №8 и №9.

x(p)=3*e-2t*sin(3t) + e-2t*cos(3t).

ПРИМЕР 3. Определить уравнение переходной функции по сле-

дующей ПФ:

W(p)= .

РЕШЕНИЕ.

  1. Определяем изображение по Лапласу регулируемого параметра, учитывая, что U(p)=.

x(p)= *.

  1. Корни характеристического уравнения.

p1=0, p2= -0.2.

  1. Преобразуем изображение x(p) согласно формуле №20.

x(p)= .

  1. Определяем уравнение весовой функции по формуле №20.

x(p)=30*(1- e-0.2t).

Таким образом для построения любого переходного процесса (весовой или переходной функций) необходимо прежде всего определить корни изображенного по Лапласу регулируемого параметра. Это сделать сложно, если знаменатель является полиномом выше третьего порядка.

ОПРЕДЕЛЕНИЕ КОРНЕЙ МЕТОДОМ ПРИБЛИЖЕНИЯ.

Рассмотрим этот метод на конкретном примере.

ПРИМЕР 4. Определить корни в следующем характеристическом уравнении:

L(p)=p4+7.04p3+6.842p2+3.7104p+0.5904=0

РЕШЕНИЕ.

В первом приближении один из корней можно определить по двум последним членам этого уравнения.

3.7104p+0.5904=0 p1= -= -0.1591.

Если бы этот корень был бы вычислен точно, то данное уравнение разделилось бы на (p+0.1591) без остатка. В действительности получаем:

­_p4+7.04p3+6.842p2+3.7104p+0.5904 | p+0.1591_________.

p4+0.1591p3 p3+6.8809p2+5.748p

_6.8809p3+6.842p2

6.8809p3+1.094p2

_5.748p2+3.7104p

5.748p2+0.9145p

2.7959p+0.5904

По полученному остатку 2.7959p+0.5904 определяем корень во втором приближении.

p2=

Снова делим уравнение на p+0.211 и получаем остаток 2.570p+0.5904. Тогда корень в третьем приближении p3= -0.2297. Уравнение снова делим на p+0.2297 и т.д. Наконец, корень в девятом приближении p9= -0.24, а частное от деления

p3+6.8p2+5.21p+2.46=0.

По двум последним членам этого уравнения снова определяем корни в первом приближении

5.21p+2.46=0 p1= -0.472.

После деления уравнения на p+0.472 остаток 2.223p+2.46 и корень во втором приближении равен p2= -1.1066. Корень в третьем приближении p3=+2.256. Процесс расходится. Корень не может быть положителен в устойчивой САУ.

Тогда по трем (а не по двум) последним членам этого уравнения определяем сразу два комплексных корня характеристического уравнения.

Остаток в первом приближении 6.033p2+4.848p+8.46.

Остаток во втором приближении 5.996p2+4.802p+2.46.

Остаток в третьем приближении 6.00p2+4.80p+3.46, который незначительно отличается от остатка во втором приближении и по нему определяем значение комплексных корней.

p2,3= -0.4j0.5.

Частное от деления на остаток в третьем приближении

0.210p+2.46=0, тогда p4= -6.0.

Примечание. Корни кубического уравнения p3+6.8p2+5.21p+2.46 можно определить методом Карно. Для этого представим его в виде

p3+ap2+bp+c=0

и путем подстановки p= приводим к неполному виду.

y3+n*y+m=0,

где n=

m=

Корни y1,y2,y3 неполного кубического уравнения равны:

y1=A+B y2,3=

A= B= Q= .

Определим численные значения корней неполного кубического уравнения.

Q=

A=

B=

y1=A+B=-1.579+(-2.155)=-3.734

=1.867j0.49968.

Определяем корни данного характеристического уравнения третьего порядка.

p1=y1- = -3.734- = -6.0 p3,4=1.867j0.4996- = -0.4j0.5.

Результаты вычисления корней уравнения третьей степени методом приближения и методом Карно - совпали.

Проведем проверку правильности определения корней уравнения по теореме Виета.

-b= -6.8=p1+p2+p3= -6.0-0.4+j0.5-0.4-j0.5= -6.8

-c= -2.46= -6.0*(0.42+0.52)= -2.46

РАЗЛОЖЕНИЕ ИЗОБРАЖЕНИЯ РЕГУЛИРУЕМОГО

ПАРАМЕТРАНА СУММУ ПРОСТЫХ ДРОБЕЙ.

Определение уравнения переходного процесса x(t) по изображению регулируемого параметра в случае, когда знаменатель имеет n корней можно выполнить путем разложения изображения на простые дроби, по которым затем получить прямое преобразование Лапласа, согласно табл.1 задания 4.

x(p)=

где ci - коэффициент разложения;

pi - корень уравнения.

Коэффициент разложения ci в зависимости от вида корней уравнения определяется следующим образом.

1 СЛУЧАЙ. Все корни действительные и разные.

c i=

где A(p)= p=pi.

Тогда уравнение переходного процесса

x(t)= .

2 СЛУЧАЙ. Среди n действительных корней есть корень p=0.

ci=

Тогда уравнение переходного процесса

x(t)= +  .

3 СЛУЧАЙ. Среди n действительных корней есть m пар комплексно-сопряженных.

Для каждой пары комплексно-сопряженных корней p1,2= -j определяется два значения коэффициентов c:

с1= с2= ,

которые являются тоже комплексно-сопряженными выражениями c1,2=j.

В этом случае определяется модуль |c| и угол .

|c|= =arctg

По табл.1 (задание 4) каждой паре комплексно-сопряженных корней соответствует переходный процесс

x(p)=2*|c|*e-t*cos(t+).

В общем случае при наличии в характеристическом уравнении одного нулевого корня, k - действительных корней и m - комплексно-сопряженных переходный процесс описывается уравнением:

x(t)=

Примечание. 4-й случай, когда в уравнении есть кратные вещественные корни в данном задании не рассматриваются.

Рассмотрим несколько примеров такого способа получения уравнений переходного процесса.

ПРИМЕР 5. Единичный импульс подан на систему с передаточной функцией

W(p)=

Определить уравнение весовой функции.

РЕШЕНИЕ.

  1. Определяем изображение по Лапласу регулируемого параметра, учитывая, что U(t)=1’(t), тогда U(p)=1.

x(p)=

  1. Определяем корни характеристического уравнения.

p1= -1 p2= -2 p3= -4.

  1. Разложим полученное изображение x(p) на простые дроби.

x(p)=

  1. Коэффициенты заложения ci будем определять согласно 1-му случаю (все корни вещественные и разные).

c1(-1)=

c2(-2)=

c3(-4)=

Примечание. При нулевых начальных условиях алгебраическая сумма полученных коэффициентов разложения должна быть равна нулю.

c1+c2+c3= -0.1666 + 1- 0.8334=0

  1. Изображение регулируемого параметра.

x(p)=

  1. Уравнение весовой функции согласно формуле 5 табл.1 (задание 4).

x(t)= -0.1666*e-t+1*e-2t -0.8334*e-4t.

ПРИМЕР 6. На систему с передаточной функцией примера 5 подано единичное ступенчатое воздействие. Определить уравнение переходной функции.

РЕШЕНИЕ.

  1. Определяем изображение по Лапласу регулируемого параметра.

x(p)=

  1. Определяем корни характеристического уравнения.

p1=0 p2= -1 p3= -2 p4= -4

  1. Разложим полученное выражение x(p) на простые дроби.

x(p)=

  1. Коэффициенты разложения ci будем определять согласно 2-му случаю (среди вещественных корней есть один нулевой корень).

c1(-1)=

Характеристики

Тип файла
Документ
Размер
278 Kb
Тип материала
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6999
Авторов
на СтудИзбе
262
Средний доход
с одного платного файла
Обучение Подробнее
{user_main_secret_data}