Главная » Учебные материалы » Математика » Домашние задания » НСПК » 2 семестр » Номер Самостоятельная » Вариант 5.2 » Математика СОО Самостоятельная работа по теме 5.2. Многогранники и площади их поверхностей. Объем многогранников
Для студентов НСПК по предмету МатематикаМатематика СОО Самостоятельная работа по теме 5.2. Многогранники и площади их поверхностей. Объем многогранниковМатематика СОО Самостоятельная работа по теме 5.2. Многогранники и площади их поверхностей. Объем многогранников
2025-02-01СтудИзба

☀️Математика СОО Самостоятельная работа по теме 5.2. Многогранники и площади их поверхностей. Объем многогранников | НСПК 100% правильно☀️

-17%

Описание

📇Полная база ответов НСПК, ОСЭК и многие другие 📇

📃Готовые работы и услуги для НСПК, ОСЭК и других 📃


Цель занятия: приобретение и закрепление навыков нахождения площади поверхности и объема многогранника.

Задание 1. Из учебника «Богомолов, Н. В. Математика: учебник для среднего профессионального образования / Н. В. Богомолов, П. И. Самойленко. — 5-е изд., перераб. и доп. — Москва : Издательство Юрайт, 2023» изучите главу 13 стр. 335-345, главу 15 стр. 360-362, 365-366
Ключевые вопросы темы: Многогранники и их основные свойства. Параллелепипед. Пирамида. Площади поверхностей многогранников. Правильные многогранники. Объем прямоугольного параллелепипеда. Объем прямой треугольной призмы. Объем многоугольной прямой призмы. Объем пирамиды. Объем усеченной пирамиды.

Задание 2. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 3 и 4. Площадь поверхности этого параллелепипеда равна 94. Найдите третье ребро, выходящее из той же вершины.

Задание 3. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 2. Площадь поверхности параллелепипеда равна 16. Найдите его диагональ.

Задание 4. Ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 2, 3. Найдите его площадь поверхности.

Задание 5. Найдите площадь боковой поверхности правильной шестиугольной призмы, сторона основания которой равна 5, а высота – 10

Задание 6. Найдите площадь поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными 6 и 8, и боковым ребром, равным 10.

Задание 7. Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 8. Площадь ее поверхности равна 288. Найдите высоту призмы.

Задание 8. В правильной треугольной призме, все ребра которой равны 3, найдите угол между прямыми ВВ1 и АС1 Ответ дайте в градусах.

Задание 9. В правильной треугольной призме ABCA1B1C1 стороны оснований равны 2, боковые рёбра равны 5. Найдите площадь сечения призмы плоскостью, проходящей через середины рёбер AB, AC, A1B1 и A1C1.

Задание 10. Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 8, боковое ребро равно 5. Найдите объем призмы.

Задание 11. Через среднюю линию основания треугольной призмы, объем которой равен 32, проведена плоскость, параллельная боковому ребру. Найдите объем отсеченной треугольной призмы.

Задание 12. В правильной четырехугольной пирамиде АВCDS точка O – центр основания, S – вершина, SO=30, SA=34. Найдите длину отрезка АС.
Задание 13. В правильной треугольной пирамиде SABC точка M – середина ребра AB, S – вершина. Известно, что BC = 3, а площадь боковой поверхности пирамиды равна 45. Найдите длину отрезка SM.
Задание 14. Предлагаем вам пройти тестирование по материалам учебников данной дисциплины. Тестирование размещено на платформе Юрайт и доступно вам для самопроверки по указанной ниже ссылке.
Ссылка на тест (нажмите на ссылку или скопируйте ее и вставьте в строку браузера):

Учебник:
Богомолов, Н. В. Математика. Углубленный уровень. 10—11 классы : учебник для среднего общего образования / Н. В. Богомолов, П. И. Самойленко. — 5-е изд., перераб. и доп. — Москва : Издательство Юрайт, 2023. — 399 с. — (Общеобразовательный цикл). — ISBN 978-5-534-15610-2. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/520551

Тест 11: Многогранники и площади их поверхностей
https://urait.ru/quiz/run...0B-B808-923ACDD8FE82



Показать/скрыть дополнительное описание

Цель занятия: приобретение и закрепление навыков нахождения площади поверхности и объема многогранника. Задание 1. Из учебника «Богомолов, Н. В. Математика: учебник для среднего профессионального образования / Н. В. Богомолов, П. И. Самойленко. — 5-е изд., перераб. и доп. — Москва : Издательство Юрайт, 2023» изучите главу 13 стр. 335-345, главу 15 стр. 360-362, 365-366 Ключевые вопросы темы: Многогранники и их основные свойства. Параллелепипед. Пирамида. Площади поверхностей многогранников. Правильные многогранники. Объем прямоугольного параллелепипеда. Объем прямой треугольной призмы. Объем многоугольной прямой призмы. Объем пирамиды. Объем усеченной пирамиды.

Задание 2. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 3 и 4. Площадь поверхности этого параллелепипеда равна 94. Найдите третье ребро, выходящее из той же вершины. Задание 3. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 2. Площадь поверхности параллелепипеда равна 16. Найдите его диагональ. Задание 4. Ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 2, 3. Найдите его площадь поверхности. Задание 5. Найдите площадь боковой поверхности правильной шестиугольной призмы, сторона основания которой равна 5, а высота – 10 Задание 6. Найдите площадь поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными 6 и 8, и боковым ребром, равным 10.

Задание 7. Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 8. Площадь ее поверхности равна 288. Найдите высоту призмы. Задание 8. В правильной треугольной призме, все ребра которой равны 3, найдите угол между прямыми ВВ1 и АС1 Ответ дайте в градусах. Задание 9. В правильной треугольной призме ABCA1B1C1 стороны оснований равны 2, боковые рёбра равны 5. Найдите площадь сечения призмы плоскостью, проходящей через середины рёбер AB, AC, A1B1 и A1C1. Задание 10. Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 8, боковое ребро равно 5. Найдите объем призмы. Задание 11. Через среднюю линию основания треугольной призмы, объем которой равен 32, проведена плоскость, параллельная боковому ребру.

Найдите объем отсеченной треугольной призмы. Задание 12. В правильной четырехугольной пирамиде АВCDS точка O – центр основания, S – вершина, SO=30, SA=34. Найдите длину отрезка АС. Задание 13. В правильной треугольной пирамиде SABC точка M – середина ребра AB, S – вершина. Известно, что BC = 3, а площадь боковой поверхности пирамиды равна 45. Найдите длину отрезка SM. Задание 14. Предлагаем вам пройти тестирование по материалам учебников данной дисциплины. Тестирование размещено на платформе Юрайт и доступно вам для самопроверки по указанной ниже ссылке. Ссылка на тест (нажмите на ссылку или скопируйте ее и вставьте в строку браузера): Учебник: Богомолов, Н.

В. Математика. Углубленный уровень. 10—11 классы : учебник для среднего общего образования / Н. В. Богомолов, П. И. Самойленко. — 5-е изд., перераб. и доп. — Москва : Издательство Юрайт, 2023. — 399 с. — (Общеобразовательный цикл). — ISBN 978-5-534-15610-2. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/520551 Тест 11: Многогранники и площади их поверхностей https://urait.ru/quiz/run-test/95D9EAFF-E0F5-4B51-9E69-853C423A7C52/496D3361-3EC8-480B-B808-923ACDD8FE82   .

Характеристики домашнего задания

Предмет
Учебное заведение
Семестр
Номер задания
Вариант
Просмотров
1
Качество
Идеальное компьютерное
Срок выполнения
3 суток

Преподаватели

Картинка-подпись
Ответы на все тесты ВГАПС, НИИДПО, НСПК, помощь с закрытием сессий, а также другие работы и услуги - у меня в профиле, переходите :)

Комментарии

Поделитесь ссылкой:
Базовая цена: 590 490 руб.
Помощь с закрытием всего семестра Услуга за 15990 руб.
Помощь с закрытием любой дисциплины Услуга за 1990 руб.
Помогу решить любое комплексное задание Услуга за 990 руб.
Расширенная гарантия +3 недели гарантии, +10% цены
Рейтинг ждёт первых оценок
0 из 5
Оставьте первую оценку и отзыв!
Поделитесь ссылкой:
Сопутствующие материалы
Вы можете использовать домашнюю работу для примера, а также можете ссылаться на неё в своей работе. Авторство принадлежит автору работы, поэтому запрещено копировать текст из этой работы для любой публикации, в том числе в свою домашнюю работу в учебном заведении, без правильно оформленной ссылки. Читайте как правильно публиковать ссылки в своей работе.
Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6264
Авторов
на СтудИзбе
317
Средний доход
с одного платного файла
Обучение Подробнее