Задача 1: Динамика материальной точки вариант 26
Описание
Вариант 26 - ДЗ №1 - Динамика материальной точки
Зачтено на максимальный балл 💥 💥 💥
Спасибо за покупку 🥰🥰🥰
ДЗ №1 - Динамика материальной точки

Гладкая частица сферической формы массой m, которую можно рассматривать как материальную точку, ударяется со скоростью о гладкую массивную преграду, которая движется со скоростью . Угол, образованный векторами и , равен . Массу преграды считать бесконечной. На рис. 5, 6 преграда имеет форму плоской стенки, на рис.7 – форму острого конуса с углом раствора γ, а на рис. 8 – форму конуса сферической головной частью радиусом R. Удар частицы о сферическую поверхность происходит в точке А, расположенной под углом γ относительно оси преграды. При этом АО = R. Виды взаимодействия: а) абсолютно упругий удар (АУУ); б) неупругий удар (НУУ); в) абсолютно неупругий удар (АНУУ).
Обозначения: - конечная скорость частицы после удара; αк - угол, образованный векторами и ; - изменение вектора скорости частицы за время удара; - изменение модуля импульса частицы за время удара; ΔE - изменение кинетической энергии частицы за время удара; F - модуль средней силы, с которой частица действует на стенку во время удара; F.Δt - модуль импульса силы, который за время удара Δt частица передаёт стенке; - энергия деформирования частицы при ударе, выраженная через её начальную кинетическую энергию, где - безразмерный коэффициент. Однородный жёсткий стержень длиной l=0,5 м и массой М=0,5 кг может свободно без трения вращаться вокруг горизонтальной оси О.
При прохождении стержнем вертикального положения с угловой скоростью 0 , он своим нижним концом ударяет по маленькому кубику массой m=0,1 кг, который после удара движется в плоскости рисунка (рис. 1). При этом взаимодействие стержня с кубиком может происходить в виде: абсолютно упругого удара (АУУ); неупругого удара (НУУ); абсолютно неупругого удара (АНУУ). Другие обозначения: 0 – угловая скорость стержня сразу после взаимодействия с кубиком; 0m – минимальная угловая скорость 0, при которой стержень после удара совершит полный оборот вокруг оси O при заданном типе взаимодействия; 0m – угловая скорость стержня сразу после взаимодействия с кубиком, при условии, что начальная угловая скорость стержня была равна 0m; К - угловая скорость стержня в крайней верхней точке после удара; m - максимальный угол отклонения стержня от положения равновесия после удара; V0 – скорость кубика после удара; E – потери механической энергии при ударе стержня по кубику.
Расчет следует начинать с определения минимальной угловой скорости стержня 0m..
Характеристики решённой задачи
Список файлов
