Главная » Просмотр файлов » ОТВЕТЫ К БИЛЕТАМ ПО ФИЗИКЕ37

ОТВЕТЫ К БИЛЕТАМ ПО ФИЗИКЕ37 (998165)

Файл №998165 ОТВЕТЫ К БИЛЕТАМ ПО ФИЗИКЕ37 (Ответы к билетам)ОТВЕТЫ К БИЛЕТАМ ПО ФИЗИКЕ37 (998165)2015-11-20СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Экзаменационные билеты по физике.

Элементы квантовой механики.

1. Волновые свойства частиц: гипотеза де-Бройля. Волновая функция, её свойства.

2. Соотношение неопределённостей Гейзенберга.

3. Уравнение Шредингера для стационарных состояний частиц. Статистический смысл и

свойства волновой функции.

4. Частица в бесконечно глубокой потенциальной яме. Квантование энергии частицы.

Собственные значения волновой функции.

Атомная физика.

5. Модель атома Бора. Спектр излучения атома водорода.

6. Квантовомеханическая теория атома водорода. Квантование энергии, момента

импульса, и проекции момента импульса электрона в атоме водорода.

7. Магнитные свойства атома. Спин электрона. Орбитальные и спиновые характеристики

электрона в атоме.

8. Полный набор квантовых чисел электрона в атоме. Принцип Паули. Многоэлектронные

атомы (пример заполнения оболочек атома электронами).

Физика твёрдого тела.

9. Образование энергетических зон в твёрдом теле. Квантовая модель свободных

электронов в твёрдом теле. Уровень Ферми.

10. Основные положения квантовой статистики Ферми-Дирака. Плотность электронных

состояний. Функция распределения Ферми-Дирака.

11. Распределение свободных электронов в металле по импульсам, по энергиям.

12. Вычисление энергии Ферми и средней энергии электронов в металле при T=0 К.

Понятие о вырождении электронного газа. Условие вырождения.

13. Электрическая проводимость твёрдых тел с точки зрения зонной теории. Металлы.

Полупроводники. Диэлектрики. Зависимость проводимости твёрдых тел от

температуры.

14. Полупроводники. Собственная и примесная проводимости. Донорные и акцепторные

уровни в полупроводниках. Зависимость проводимости полупроводников от

температуры.

Ядерная физика.

15. Структура атомных ядер. Дефект массы и энергия связи. Устойчивость ядер. Деление

и синтез ядер.

16. Закон радиоактивного распада. Период полураспада, постоянная распада, среднее

время жизни, активность. Виды радиоактивного распада.

1. Волновые свойства частиц: гипотеза де-Бройля. Волновая функция, её свойства.

Волновые свойства частиц.

Изучение оптических явлений показало, что в природе света свойственен дуализм. В одних явлениях свет ведёт себя, как электромагнитная волна (интерференция, дифракция). В других проявляются его корпускулярные свойства (фотоэффект, эффект Комптона). 1924 году Луи де-Бройль высказал гипотезу, что дуализм не является особенностью свойств света, но имеет универсальное значение. Он предположил, что поток электронов движущихся с постоянной по величине и направлению скоростью проявляет свойство волн. При этом связь между корпускулярной природой микрочастиц и волновой природой такая же, как для света.

;

Для микрочастиц:

(1); (2)

Формула 1 называется длиной волны де Бройля.

Гипотеза де Бройля была подтверждена экспериментами. Дэвиссон и Джермер обнаружили волновые свойства у потока электронов, изучая их отражения от монокристалла никеля. Томсон и Тартановский получили дифракционные картины, изучая прохождение электронного пучка через тонкую металлическую фольгу. Ивтерн и сотрудники получили дифракционные картины на атомных и молекулярных пучках. Бибермен, Сушкин и Фабрикант изучая прохождение через тонкие фольги слабоинтенсивных электронных пучков доказали наличие волновых свойств у отдельных электронов.

Микрочастицы являются такими объектами, которым одновременно присуще и корпускулярные и волновые свойства. Потому к ним нельзя строго применять понятия и законы классической механики, которая изучает макротела.

Например:

Для макротела состояние определяется заданием для одного и того же момента времени координат и проекций импульса. Для этого также есть понятие траектории. Для микротел из-за существования у них……… нельзя определить их состояние, одновременным точным заданием в координатах проекции импульса.

При определёнии условиях задать состояние таких частиц можно только приближённо. Степень приближения определяется принципом неопределенности Гейзенберга. Это принцип, который устанавливает связь между неопределённостями значений различных пар канонически сопряжённых величин (например, и , и , и другие) при их одновременном измерении.

Соотношения неопределённостей имеют вид:

Произведение неопределённости значений двух канонически сопряженных величин не может быть по порядку величины меньше постоянной Планка. Это и есть принцип неопределённости Гейзенберга.

; ;

3. Уравнение Шредингера для стационарных состояний частиц. Статистический смысл и свойства волновой функции.

Подобно тому, как в классической механике состояние макрочастиц описывается с помощью уравнений Ньютона, в квантовой механике состояние микрочастиц определяется уравнением Шредингера. Шредингер ввёл для описания состояния частицы комплексную функцию координат и времени, которая является решением дифференциального уравнения предложенного им. Эта функция стала называться пси-функцией, или волновой функцией.

Уравнение Шредингера (со временем) имеет вид:

;

где - масса микрочастицы; - мнимая единица; - для стационарного (не зависящего от времени) силового поля является потенциальной энергией;

- волновая функция;

- оператор Лапласа-Лапласиан;

где – дифференциальный оператор;

Если силовое поле стационарно, то полная волновая функция распадается на два множителя, один из которых зависит только от координат, а другой – только от времени. При этом полное уравнение Шредингера полностью распадается на два уравнения:

Уравнение для записывается в виде:

(4а)

или в виде: (4б)

4а и 4б – уравнения Шредингера для стационарных состояний, или амплитудное уравнение Шредингера. В уравнениях(4):

;

где - масса микрочастицы; - потенциальная энергия микрочастицы в силовом поле (стационарном); - полная энергия микрочастицы.

Физический смысл волновой функции был определён Борнам, а именно: квадрат модуля волновой функции пропорционален вероятности обнаружения микрочастицы в единичном элементе объёма вблизи точки {x,y,z}, то есть . Найти вероятность в элементе объёма в окрестности точки {x,y,z}.

- плотность вероятности

Для стационарных задач:

Таким образом, вероятность для стационарных задач:

Исходя из физического смысла пси-функции определяются её свойства: пси-функция должна быть:

1. Однозначной

2. Непрерывной

3. Конечной, а также

4. Должна иметь непрерывные и конечные первые производные.

Условия (1)-(4) налагаемые на волновую функцию называется стандартными условиями.

Волновая функция, исходя из её физического смысла должна удовлетворять условию нормировки:

Волновые функции, удовлетворяющие условию нормировки называются нормированными.

Если область, в которой движется частица ограничена, то решение уравнения Шредингера удовлетворяющее стандартному условию будут иметь место только для определённых дискретных значений поной энергии . Это значения энергии (то есть значения энергии ), при которых -функция удовлетворяет стандартным условиям называется собственным значением энергии. В указанном выше случае спектр собственных значений будет дискретным.

Если область движения частицы не ограничена, то спектр собственных значений энергии - непрерывный или сплошной.

Волновые функции соответствующие собственным значениям энергии называются собственные волновые функции.

4. Частица в бесконечно глубокой потенциальной яме. Квантование энергии частицы. Собственные значения волновой функции.

Частица в бесконечно глубокой одномерной прямоугольной потенциальной яме.

Уравнение Шредингера:

,

Решение может быть записано в одном из видов:

1.

2.

3.

Исследуя решение в виде:

Эта функция удовлетворяет условиям. Наложим на неё граничные условия.

(1) Так как частица не может находится за стенками ямы (и по

(2) условию непрерывности) на стенках ямы, т.е.

Из (1):

Возьмём и , тогда

Из (2):

Из физических соображений , так как при при любом , что противоречит условию…….. нахождения частицы в яме. Таким образом, можем записать условие квантования величины , а именно:

;

Но

Следовательно:

Характеристики

Тип файла
Документ
Размер
649,5 Kb
Предмет
Высшее учебное заведение

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6384
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее