Гидравлика(веб) (950001), страница 4
Текст из файла (страница 4)
Формула (55) может быть записана в двух видах
где – избыточное давление в центре тяжести площади S, или
Согласно (56) величина силы избыточного давления покоящейся жидкости на плоскую стенку равна произведению площади стенки на избыточное давление в ее центре тяжести.
Вектор силы направлен по нормали к стенке S:
а линия действия этой силы пересекает стенку в некоторой точке D, называемой центром давления. Для отыскания координат этой точки ( ) используем теорему о равенстве момента равнодействующей и суммы моментов составляющих, которая в данном случае выражается уравнением
где и
– радиус-векторы соответственно центра давления D и произвольной точки (ху) площади S.
По правилам составления проекций векторного произведения находим
Учитывая выражения (54) и (55), получим
Более удобные выражения для и
получим, если воспользуемся теоремой о соотношении между моментами второй степени, взятыми относительно параллельных осей
где – оси координат, проходящие через центр тяжести С площадки S параллельно осям х и у;
и
– координаты центра тяжести С в системе xу;
– центробежный момент площади S относительно осей х и у ;
– момент инерции площади S относительно оси х (см. рис. 8). Окончательно,
Вторая из формул (60) показывает, что центр давления расположен ниже центра тяжести на величину .
Возвращаясь к формуле (57), заметим, что силу давления в рассматриваемом случае можно получить, складывая независимо вычисленные две силы: и
, где
– сила внешнего избыточного давления,
– сила весового давления. При таком способе определения силы
следует помнить, что линии действия сил
и
не совпадают, и центр давления D определяется линией действия суммарной силы
.
2.4. Неравномерное давление на криволинейную твердую поверхность ( ,
) может быть создано тяжелой жидкостью при абсолютном или относительном покое. Элементарные силы
составляют в этом случае самую общую систему, которая должна сводиться к силе давления
(46) и моменту
(47). Однако существуют частные случаи,, когда система сводится к одной силе давления
, например, если линии действия элементарных сил
пересекаются в одной точке (сферическая стенка).
Рассмотрим криволинейную поверхность S, находящуюся под воздействием внешнего избыточного давления и весового давления
(рис.9). Как было показано в предыдущем пункте, задачу отыскания силы давления можно расчленить, определяя раздельно силы весового и внешнего давлений. Эту же задачу можно свести к задаче об определении только весового давления, заменив внешнее давление действием эквивалентного слоя жидкости.
Силу весового давления определим по ее проекциям. Горизонтальная проекция
где – проекция площадки dS на вертикальную плоскость, нормальную к оси х. Последний интеграл представляет собой статический момент площади
относительно оси y. Следовательно,
где – координата центра тяжести площади
.
Аналогично получим
где – площадь проекции криволинейной поверхности на плоскость, нормальную оси y.
Таким образом, чтобы вычислить горизонтальную проекцию силы весового давления на криволинейную поверхность, следует площадь проекции
этой поверхности на плоскость, нормальную к рассматриваемой горизонтальной оси, умножить на давление в центре тяжести площади
.
Проекция силы весового давления на вертикальную ось определится соотношением
где – проекция на плоскость х0у поверхности S.
Последний интеграл представляет собой объем тела , ограниченного поверхностью S, цилиндрической боковой поверхностью
с вертикальными образующими и проекцией
криволинейной поверхности S на свободную поверхность жидкости. Это тело называется телом давления, а величина
есть вес жидкости в его объеме.
Т
аким образом, вертикальная проекция силы весового давления на криволинейную поверхность равна весу жидкости в объеме тела давления.
Величина силы
определится формулой
а направление линии ее действия – направляющими косинусами
Если ,
и
пересекаются в одной точке, то система сводится к силе давления, проходящей через эту точку.
Возможны два случая расположения криволинейной поверхности (рис. 10 а и б) под уровнем жидкости. В первом случае жидкость расположена над твердой поверхностью; тело давления заполнено жидкостью и считается положительным, а вертикальная составляющая силы направлена вниз. Во втором случае тело давления не заполнено жидкостью и считается отрицательным; вертикальная сила давления направлена вверх.
Если криволинейная поверхность S замкнута и полностью погружена под уровень абсолютно покоящейся жидкости (рис. 11), то воздействие жидкости сводится к одной вертикальной силе. Действительно, для любой горизонтальной оси существуют две противоположно направленные и равные по величине силы, действующие на тело; поэтому результирующая горизонтальных сил равна нулю. Чтобы найти вертикальную силу, проектируем S на свободную поверхность жидкости. Проектирующие вертикали отметят на поверхности тела замкнутую линию l, которая делит поверхность на две части и
. Для верхней части
тело давления положительно и соответствующая ему сила направлена вертикально вниз, а для нижней
– тело давления отрицательно и сила направлена вверх. Обозначив объемы этих тел давления соответственно через
и
, найдем величину результирующей вертикальной силы А:
Таким образом, сила давления покоящейся жидкости на погруженное в нее тело направлена вертикально вверх и равна весу жидкости в объеме тела. Этот результат составляет содержание закона Архимеда: сила А называется архимедовой или гидростатической подъемной силой. Если G – вес тела, то его плавучесть определяется соотношением сил А и G. При тело тонет, при
– всплывает, при G = А – плавает в состоянии безразличного равновесия. Следует иметь в виду, что линии действия сил G и А могут не совпадать, так как линия действия веса G проходит через центр тяжести тела, а линия действия архимедовой силы А – через центр его объема. При неравномерном распределении плотности тела может появиться момент, способствующий опрокидыванию тела.
В заключение отметим, что сила давления жидкости по криволинейной поверхности в случаях относительного покоя может быть определена общим способом суммирования элементарных сил давления, применительно к заданной форме поверхности и условиям относительного покоя.
2. ГИДРОДИНАМИКА
2.1 Основные понятия гидродинамики
Основные элементы движения жидкости. Причинами движения жидкости являются действующие на нее силы: объемные или массовые силы (сила тяжести, инерционные силы) и поверхностные силы (давление, трение). В отличие от гидростатики, где основной величиной, характеризующей состояние покоя жидкости, является гидростатическое давление, которое определяется только положением точки в пространстве, т.е. , в гидродинамике основными элементами, характеризующими движение жидкости, будут два: гидродинамическое давление и скорость движения (течения) жидкости.
Гидродинамическое давление р – это внутреннее давление. развивающееся при движении жидкости. Скорость движения жидкости в данной точке и – это скорость перемещения находящейся в данной точке частицы жидкости, определяемая длиной пути l, пройденного этой частицей за единицу времени t.
В общем случае основные элементы движения жидкости р и и для данной точки зависят от ее положения в пространстве (координат точки) и могут изменяться во времени. Аналитически это положение гидродинамики записывается так:
Задачей гидродинамики и является определение основных элементов движения жидкости р и u, установление взаимосвязи между ними и законов изменения их при различных случаях движения жидкости.
Траектория частицы.Если в массе движущейся жидкости взять какую-либо частицу жидкости и проследить ее путь за какой-то промежуток времени (конечный, достаточно большой), то можно получить некоторую линию, выражающую геометрическое место этой точки в пространстве за время
.
Л иния тока. Если в массе движущейся жидкости в данный момент времени t взять какую-либо точку 1 (рис. 12), то можно в этой точке построить вектор скорости и1, выражающий величину и направление скорости движения частицы жидкости в данной точке 1 в этот момент времени.
В тот же момент времени t можно взять и другие точки в движущейся жидкости, например, точки 2, 3, 4,. ..... в которых также можно построить векторы скоростей u2, u3, и4,… выражающие скорость движения других частиц жидкости в тот же момент.
Можно выбрать точки 1, 2, 3, 4. . . и провести через них плавную кривую, к которой векторы скоростей будут всюду касательны. Эта линия и называется линией тока.
Таким образом, линией тока называется линия, проведенная через ряд точек в движущейся жидкости так, что в данный момент времени векторы скорости частиц жидкости, находящихся в этих точках, направлены по касательной к этой линии. В отличие от траектории, которая показывает путь движения одной частицы жидкости за определенный промежуток времени , линия тока соединяет разные частицы и дает некоторую мгновенную характеристику движущейся жидкости в момент времени t. Через заданную точку в данный момент времени можно провести только одну линию тока.
Если в данных точках движущейся жидкости величина и направление скорости и гидродинамическое давление с течением времени не изменяются (такое движение называется установившимся), то и линия тока, и траектория частицы, оказавшейся на ней, совпадают и со временем не изменяются. В этом случае траектории частиц являются и линиями тока.
Э лементарная струйка. Если в движущейся жидкости выделить весьма малую элементарную площадку
, перпендикулярную направлению течения, и по контуру ее провести линии тока, то полученная поверхность называется трубкой тока, а совокупность линий тока, проходящих сплошь через площадку
, образует так называемую элементарную струйку (рис. 13).
Элементарная струйка характеризует состояние движения жидкости в данный момент времени t. При установившемся движении элементарная струйка имеет следующие свойства: