фопросы (946127), страница 3
Текст из файла (страница 3)
Вопросы по молекулярной физике.
-
Идеальный газ. Уравнение состояния идеального газа.
Идеальным наз. газ у которого молекулы представляют из себя материальные точки и силы взаимодействия между ними возникают только при непосредственном взаимодействии (соударении) молекул. Давление р, температура Т и объем V , занимаемый определенной массой газа называются параметрами состояния. Каждый из параметров является функций двух других.
Уравнение, связывающее р, T и V для данной массы газа называется уравнением состояния. p = f (T,V)
Состояние газа однозначно определяется двумя любыми параметрами.
Основное уравнение кинетической теории газов p = n0kT n0 = N ⁄ V - концентрация, представим в виде: pV = NkT
Вместо неизмеряемого числа молекул газа N введем измеряемую величину - массу М газа.
Грамм- молекула (моль) вещества- такого количества вещества, масса которого в граммах равна молекулярной массе ( μ ), выраженной в частях массы молекулы углерода mc ⁄ 12.
Моль любого вещества содержит одинаковое количество молекул (по определению) - число Авогадро NA = 6,02 • 1023. Число молей вещества в данной массе равно:
N/NA= M/μN= M/μ*NA - число молекул в данной массе газа.
Тогда основное кинетическое уравнение представим в форме
pV = M/μ NAkT
Произведение двух констант NA и k называется универсальной газовой постоянной.
R = NAk = 8,31 [Дж/к*моль] 8,31 • 103 [Дж/к*моль]
Получим уравнение состояния идеального газа в форме Менделеева - Клайперона.
pV =M/μ RT
-
Давление идеального газа на основе молекулярно – кинетической теории.
-
Молекулярно – кинетическое толкование абсолютной температуры.
C точки зрения молекулярно-кинетической теории молекулы нагретого тела находятся в хаотическом движении. Причем, чем выше температура T, тем больше средняя кинетическая энергия <εk>хаотического движения молекул (T~<εk>).
Связь между средней кинетической энергией поступательного движения молекулы и абсолютной температурой дается формулой <εk>=3/2kT где k - постоянная Больцмана, k=1.38*10-23 (Дж/К). Следовательно, абсолютная температура есть мера средней кинетической энергии поступательного движения молекулы.
Формула позволяет выяснить смысл абсолютного нуля: T=0, если < εk > =0. Т. е. абсолютный нуль - это температура, при которой прекращается всякое хаотическое движение молекул.
-
Число степени свободы молекул. Закон равномерного распространения энергии по степеням свободы молекул.
Числом степеней свободы механической системы называется число независимых координат, полностью определяющих положение системы в пространстве.
п оказаны одноатомная, двухатомная и трехатомная молекулы. Одноатомную молекулу можно представить как материальную точку. Для определения положения точки в пространстве нужно три координаты, т. е. три степени свободы поступательного движения (i = 3). Молекулу двухатомного газа в первом приближении можно рассматривать как совокупность двух жестко связанных материальных точек. Эта молекула кроме трех степеней свободы поступательного движения имеет две степени свободы вращательного движения (i = 5). Вращение вокруг оси, проходящей через оба атома, не учитывается.
Трехатомная молекула с жесткими связями имеет 6 степеней свободы: 3 - поступательного и 3 - вращательного движения (i = 6).
В классической физике принят постулат о равномерном распределении энергии по степеням свободы. На каждую степень свободы любого вида движения приходится энергия, равная kT/2. Таким образом, средняя энергия одной молекулы равна <ε1>=i/2kT В классической физике принят постулат о равномерном распределении энергии по степеням свободы. На каждую степень свободы любого вида движения приходится энергия, равная kT/2. Таким образом, средняя энергия одной молекулы равна <ε1>=i/2kT
закон Больцмана о равномерном распределении энергии по степеням свободы молекул: для статистической системы, находящейся в состоянии термодинамического равновесия, на каждую поступательную и вращательную степени свободы приходится в среднем кинетическая энергия, равная kT/2, а на каждую колебательную степень свободы - в среднем энергия, равная kT. Колебательная степень обладает вдвое большей энергией потому, что на нее приходится не только кинетическая энергия, но и потенциальная, причем средние значения кинетической и потенциальной энергий одинаковы. Таким образом, средняя энергия молекулы <ε>=i/2kT, где i - сумма числа поступательных, числа вращательных и удвоенного числа колебательных степеней свободы молекулы: i=iпост +iвращ+2iколеб.
В классической теории рассматривают молекулы с жесткой связью между атомами; для них i совпадает с числом степеней свободы молекулы.
Так как в идеальном газе взаимная потенциальная энергия молекул равна нулю, то внутренняя энергия, отнесенная к одному молю газа, равна сумме кинетических энергий NA молекул: .Внутренняя энергия для произвольной массы m газа
, где k - постоянная Больцмана, n -количество вещества.
Функция распределения Максвела – Больцмона характеризует распределение молекул по полным энергиям
-
Закон Максвелла для распределения молекул идеального газа по скоростям.
Закон распределения молекул идеального газа по скоростям (закон Максвелла) определяет вероятное количество dN молекул из полного их числа N (число Авогадро) в данной массе газа, которые имеют при данной температуре Т скорости, заключенные в интервале от V до V + dV: dN/N=F(V)dV F(V) - функция распределения вероятности молекул газа по скоростям определяется по формуле; F(V)=4π(M/2πRT)3/2 V2 exp(MV2/2RT) где V - модуль скорости молекул, м/с; - абсолютная температура, градусы Кельвина, К;
М - молярная масса, кг/моль, численно равная молекулярной массе;
R = 8,3144 Дж/(моль•К) - универсальная газовая постоянная в системе СИ.
-
Закон Больцмана для распределения частиц во внешнем потенциальном поле.
-
Первое начало термодинамики.
Первое начало термодинамики представляет собой обобщение опытных фактов и является по сути дела законом сохранения энергии, примененным к тепловым явлениям. Первое начало термодинамики имеет несколько формулировок. Одна из формулировок гласит: количество теплоты, переданное системе, идет на изменение внутренней энергии и на совершение системой работы над внешними телами, т. е. Q=∆U+A В этом уравнении изменение внутренней энергии, Количество теплоты может быть положительным (Q>0), если тело получает теплоту, и отрицательным (Q>0), если тело отдает теплоту.
В дифференциальной форме это запишется следующим образом δQ=dU+δA
где dU и δA Первое начало термодинамики показывает, что теплоту можно преобразовывать в работу, т. е. выделять из неупорядоченного движения упорядоченное. Устройство, в котором теплота превращается в работу, называется тепловой машиной.
-
классическая молекулярно – кинетическая теория теплоемкости идеальных газов.
-
Первое начало термодинамики и изопроцессы.
Среди равновесных процессов, происходящих с термодинамическими системами, выделяются изопроцессы, при которых один из основных параметров состояния сохраняется постоянным.
И зохорный процесс (V=const). Диаграмма этого процесса (изохора) в координатах р, V изображается прямой, параллельной оси ординат, где процесс 1-2 есть изохорное нагревание, а 1-3 - изохорное охлаждение. При изохорном процессе газ не совершает работы над внешними телами, т.е.
.δA=pdV=0
Для изохорного процесса следует, что вся теплота, сообщаемая газу, идет на увеличение его внутренней энергии: dQ=dU
DUm=CvdT. Тогда для произвольной массы газа получим dQ=dU=mCvT/M
Изобарный процесс (p=const). Диаграмма этого процесса (изобара) в координатах р, V изображается прямой, параллельной оси V. При изобарном процессе работа газа при расширении объема от V1 до V2 равна
и определяется площадью прямоугольника. Если использовать уравнение Клапейрона - Менделеева для выбранных нами двух состояний, то
Тогда выражение для работы изобарного расширения примет вид
A=m/MR(T2-T1). Из этого выражения вытекает физический смысл молярной газовой постоянной R: если Т2-T1 =1 К, то для 1 моля газа R=А, т.е. R численно равна работе изобарного расширения 1 моля идеального газа при нагревании его на 1 К.
В изобарном процессе при сообщении газу массой m количества теплоты
его внутренняя энергия возрастает на величину
Изотермический процесс (T=const). Изотермический процесс описывается законом Бойля - Мариотта: PV=const.
Диаграмма этого процесса (изотерма)в координатах р, V представляет собой гиперболу, расположенную на диаграмме тем выше, чем выше температура, при которой происходил процесс. Работа изотермического расширения газа:
.
Так как при T=const внутренняя энергия идеального газа не изменяется
то из первого начала термодинамики (dQ=dU+dA) следует, что для изотермического процесса dQ=dA, т.е. все количество теплоты, сообщаемое газу, расходуется на совершение им работы против внешних сил
Следовательно, для того, чтобы при работе расширения температура не уменьшалась, к газу в течение изотермического процесса необходимо подводить количество теплоты, эквивалентное внешней работе расширения.
-
Первое начало термодинамики и адиабатический процесс.
Адиабатическим называется процесс, при котором отсутствует теплообмен (dQ = 0) между системой и окружающей средой. К адиабатическим процессам можно отнести все быстропротекающие процессы. Адиабатические процессы применяются в двигателях внутреннего сгорания (расширение и сжатие горючей смеси в цилиндрах), в холодильных установках и т. д. Из первого начала термодинамики d Q = dU + dA для адиабатического процесса следует, что d A = – dU * т. е. внешняя работа совершается за счет изменения внутренней энергии системы. Используя выражения для элементарной работы и приращения внутренней энергии, для произвольной массы газа получаем уравнение в виде pdV=-m/MCvdT Продифференцировав уравнение состояния для идеального газа pV=m/MRT, получим pdV+Vdp=m/mRdT Исключив из уравнений температуру Т:
Разделив переменные и учитывая, что Cp/Cv = g , найдем dp/p=-γdV/V