Ответы - final (943730), страница 8
Текст из файла (страница 8)
Подложку МДП-транзисторов стараются делать из материала с высоким удельным сопротивлением, с тем чтобы облегчить образование канала и увеличить пробивное напряжение переходов истока и стока.
Подложки тонкопленочных ГИС должны прежде всего обладать хорошими изолирующими свойствами. Кроме того, желательны малая диэлектрическая проницаемость, высокая теплопроводность, достаточная механическая прочность. Температурный коэффициент расширения должен быть близким к температурным коэффициентам расширения используемых пленок.
Типичные параметры подложек следующие: р = 1014Ом•см; ε = 5-15; tgδ = (2-20) •10-4; TKL = (5-7)•10-6.
В настоящее время наибольшее распространение в качестве подложек имеют ситалл и керамика.
Ситалл представляет собой кристаллическую разновидность стекла (обычное стекло аморфно), а
керамика — смесь окислов в стекловидной и кристаллической фазах (главные составляющие А12О3 и Si2O).
Толщина подложек составляет 0,5-1 мм в зависимости от площади. Площадь подложек у ГИС иногда больше площади кристаллов у полупроводниковых ИС. Стандартные размеры подложек лежат в пределах от 12x10 до 96x120 мм. Требования к гладкости поверхности примерно такие же, как и в случае кремния: допустимая шероховатость не превышает 25x50 нм (класс шероховатости 12-14).
Обычно ГИС, как и полупроводниковые ИС, изготавливаются групповым методом на ситалловых или иных пластинах большой площади. По завершении основных технологических операций, связанных с получением пленочных пассивных элементов и металлической разводки, проводится выходной тестовый контроль и, если необходимо, подгонка параметров
7.2. Изоляция элементов
Элементы биполярных полупроводниковых ИС нужно изолировать друг от друга с тем, чтобы необходимые соединения осуществлялись только путем металлической разводки.
В случае изготовления на одной подложке МДП-транзисторов истоки и стоки смежных элементов оказываются разделенными встречно-включенными p-n-переходами и такая связь не столь губительна, как в биполярных элементах. Однако с ростом степени интеграции и «сближением» элементов, обратные токи разделительных p-n-переходов растут и принуждают разработчиков ИС искать способы изоляции не только биполярных, но и МДП элементов.Сравнительная оценка способов изоляции. Все известные способы изоляции можно разделить на два главных типа:
изоляцию обратносмещенным р-п-переходом и изоляцию диэлектриком.
Обедненный слой p-n-перехода, особенно при большом обратном смещении, имеет очень высокое удельное сопротивление, близкое к удельному сопротивлению диэлектриков. Поэтому указанные два типа изоляции различаются не столько удельным сопротивлением изолирующего слоя, сколько его структурой. Изоляцию p-n-переходом относят к однофазным способам, имея в виду, что материал по обе стороны и в пределах изолирующего слоя один и тот же — кремний. Изоляцию диэлектриком относят к двухфазным способам, имея в виду, что материал (фаза) изолирующего слоя отличается от материала подложки — кремния. Учитывая, что при разработке ИС происходит постоянное снижение рабочих напряжений, изоляция р-я-переходом применяется все реже и реже.
Изоляция р-n-переходом сводится к осуществлению двух встречно-включенных диодов между изолируемыми элементами — так же, как в МДП-транзисторных ИС . Для того, чтобы оба изолирующих диода находились под обратным смещением (независимо от потенциалов коллекторов), на подложку задают максимальный отрицательный потенциал от источника питания ИС1.
Изоляция p-n-переходом хорошо вписывается в общий технологический цикл биполярных ИС, однако ее недостатки — наличие обратных токов в p-n-переходах и наличие барьерных емкостей.
Изоляция диэлектриком более совершенная и «радикальная». При комнатной температуре токи утечки в диэлектрике на 3-5 порядков меньше, чем обратные токи р-n-перехода. Что касается паразитной емкости, то, разумеется, она имеет место и при диэлектрической изоляции. Однако ее легко сделать меньше барьерной, выбирая материал с малой Диэлектрической проницаемостью и увеличивая толщину диэлектрика.
Так же поступают в МДП-транзисторных ИС.
Большое распространение получила так называемая технология
кремний на сапфире (КНС, англ. S0S— Silicon On Sapphire).
Сапфир имеет такую же структуру кристал
лической решетки, как и кремний. Поэтому на сапфировой пластине
(подложке) можно нарастить эпитаксиальный слой кремния ,
а затем протравить этот слой насквозь до сапфира, так чтобы образо
вались кремниевые «островки — карманы» для будущих элементов ИС
Эти карманы с нижней стороны изолированы друг oт сапфиром — диэлектриком, а с боковых сторон -воздухом. Поэтому технологию КНС часто относят к классу воздушной изоляции
Недостатком этого метода является рельефность поверхности, которая затрудняет осуществление металлической разводки
.
а) б)
Рис. 7.9. Технология «кремний на сапфире» (КНС): а — исходная структура; б — рельефные карманы
16. Керамические диэлектрические материалы. Конденсаторная, установочная керамика и керамика для подложек микросхем. Требования, предъявляемые к конденсаторной керамике.
В электронной технике, радиотехнике и; приборостроении применяют множество различных диэлектриков. По функциям, выполняемым в аппаратуре и приборах, их можно подразделить на электроизоляционные и конденсаторные материалы (пассивные диэлектрики) и управляемые материалы (активные диэлектрики) (рис. 7.1).
Электроизоляционные материалы используют для создания электрической изоляции, которая окружает токоведущие части электрических устройств и отделяет друг от друга элементы схемы или конструкции, находящиеся под различными электрическими потенциалами.
Применение диэлектриков в конденсаторах позволяет получать требуемые значения емкости, а в некоторых случаях обеспечивает определенный характер зависимости этой емкости от внешних факторов. Диэлектрик конденсатора может запасать, а потом отдавать в цепь электрическую энергию (емкостный накопитель). Иногда конденсатор используют для разделения цепей постоянного и переменного токов, для изменения угла фазового сдвига и т. д.
Некоторые диэлектрики применяют как для создания электрической изоляции, так и в качестве конденсаторных материалов (например, слюда, керамика, стекло, полистирольные и другие пленки). Тем не менее, требования к электроизоляционным и конденсаторным материалам существенно различаются. Если от электроизоляционного материала требуется невысокая относительная диэлектрическая проницаемость и большое удельное сопротивление, то диэлектрик конденсатора, наоборот, должен иметь повышенную ε и малое значение tgδ. Роль диэлектрика в конденсаторе также нельзя считать активной, но конденсатор уже является функциональным элементом в электрической схеме.
Конденсаторы с управляемыми (активными) диэлектриками могут быть использованы для усиления сигналов по мощности, создания различных преобразователей, элементов памяти, датчиков ряда физических процессов и генерации колебаний. В классификационной схеме рис. 7.1 управляемые диэлектрики в свою очередь подразделены по принципу управления.
7.11. КЕРАМИЧЕСКИЕ ДИЭЛЕКТРИКИ
Керамикой называют неорганические материалы, полученные путем спекания измельченных и тщательно перемешанных различных минералов и окислов металлов. Необходимым компонентом большинства видов керамики являются глинистые вещества. Отсюда произошло и название материала — «керамикос» (от греч. — глиняный).
Изменяя состав исходных компонентов керамики и технологию ее производства, получают материалы с разнообразными электрическими и механическими свойствами и различного назначения: керамику конденсаторную и установочную (изоляторную), низкочастотную и высокочастотную, низковольтную и высоковольтную, высокой нагревостойкости и т.п. Керамические материалы обладают свойствами не только диэлектриков, но и полупроводников (некоторые простые оксиды и сложные оксидные системы), ферромагнетиков (ферриты), проводников (в разрывных сильноточных контактах). В сравнении с органическими диэлектриками керамика, как правило, имеет более высокую стойкость к электрическому и тепловому старению и при длительной механической нагрузке в ней не возникает пластической (остаточной) деформации.
Керамика представляет собой трехфазную систему. Основной Фазой являются хаотически разбросанные кристаллические зерна; вторая фаза — это стекловидная (амфорная) прослойка, которая связывает (цементирует) кристаллические зерна и содержит основное количество щелочных металлов, входящих в состав керамики; третья фаза - это поры, объем которых у плотной керамики составляет 2-6%, а у пористой (имеющей поры, сообщающиеся между собой и поверхностью изделия) — 15—25%. Объем, занимаемый поликристаллической фазой, и размер зерен зависят от сорта керамики, технологии ее изготовления, вводимых добавок и т.п. Обычно размер кристаллических зерен составляет несколько микрометров и меньше. По типу кристаллические структуры могут быть с плотной и не плотной упаковкой решетки ионами, чтo определяет виды поляризации виды диэлектрических потерь керамики.
Электрофизические свойства керамики формируются всеми тремя фазами При этом диэлектрическая проницаемость связана в основном процессами, протекающими в кристаллических зернах, электропроводность - в амфорной фазе, диэлектрические потери — как в кристаллических зернах, так и в амфорной фазе, электрическая и механическая прочность зависят от размера пор, химического состава и размера кристаллических зерен.
17. Основы керамической технологии материалов электронной техники.
Керамическая технология приобрела в настоящее время исключительное значение для изготовления изделий электронной техники из самых различных материалов—диэлектриков, полупроводников, магнитных, проводящих и сверхпроводящих материалов. Эта технология предполагает неограниченное разнообразие составов и свойств материалов и вместе с тем большое сходство методов оформления деталей. Общим для всех керамических материалов является основная технологическая операция — процесс спекания вещества при температуре ниже его плавления, причем в отличие от технологии стекла плавление не допускается .
Керамику получают спеканием порошков минеральных и синтетических неорганических веществ на основе оксидов, тугоплавких карбидов элементов IV и VI групп Периодической системы элементов, нитридов кремния, бора, алюминия, силицидов, боридов переходных элементов, галогенидов щелочных и щелочноземельных металлов и др.
Керамика обычно представляет собой сложную многофазную систему. В ее составе различают кристаллическую, стекловидную и газовую фазы (как правило, в виде закрытых пор).
Кристаллическая фаза как по содержанию, так и по свойствам, которыми она наделяет материал (диэлектрическая и магнитная проницаемости, мощность потерь, температурный коэффициент линейного расширения, механическая прочность), является основной фазой керамики.
Стекловидная фаза представляет собой прослойки стекла, связывающие между собой зерна кристаллической фазы. В зависимости от типа керамики доля стекловидной фазы в ней может быть большей или меньшей. Количество стекловидной фазы определяет в основном технологические свойства керамики — температуру спекания, степень пластичности и др. С увеличением содержания стекловидной фазы становятся менее заметными свойства керамики, обусловленные основной кристаллической фазой. В частности, при наличии стекловидной фазы свыше 30—40 % (радиофарфор) механическая прочность керамики становится невысокой, ухудшаются также и ее электрические параметры.
Газовая фаза в керамике (в виде закрытых пор) обусловлена особенностями технологического процесса изготовлении изделия. Часто она является нежелательной, так как приводит к ухудшению механической и электрической прочности керамических изделий, а также вызывает диэлектрические потери при повышенных напряженностях электрического поля вследствие ионизации газовых включений. Основными технологическими процессами производства изделий из керамики являются подготовка массы, формование, сушка и обжиг. При таком небольшом числе процессов в производстве керамики осуществляются разнообразные варианты технологических схем, которые меняются в зависимости от состава исходной массы, а также от характера продукции. Общее представление о технологическом процессе производства керамики
Ва СОз Ti 0 2 Минерализатор
Анализ исходных компонентов