Ответы - final (943730), страница 11
Текст из файла (страница 11)
4. высоковольтные,
5. высокоомные,
6. специальные.
По постоянству значения сопротивления резисторы подразделяют на:
1. постоянные,
2. переменные,
3. специальные.
По виду токопроводящего элемента различают проволочные и непроволочные резисторы. Основным элементом конструкции постоянного резистора является резистивный элемент, который может быть либо пленочным, либо объемным.
R = ρl/S
Для изготовления проволочных резисторов применяют сплавы никеля, хрома и т. д., имеющие большое р.
Для расчета сопротивления тонких пленок пользуются понятием удельного поверхностного сопротивления,
w — ширина резистивной пленки, δ — толщина резистивной пленки.
R = ρs l/w, где ρs = ρ/ δ удельное поверхностное сопротивление
Резисторы полупроводниковых ИМС представляют собой тонкую (толщиной 2-3 мкм) локальную область полупроводника, изолированную от подложки и защищенную слоем SiO2.
Параметры резисторов
-
Номинальное сопротивление Rном и его допустимое отклонение от номинала ±∆R
-
Номинальная мощность рассеивания Рном определяет допустимую электрическую нагрузку, которую способен выдержать резистор в течение длительного времени при заданной стабильности сопротивления
-
Предельное рабочее напряжение Uпред определяет величину допустимого напряжения, которое может быть приложено к резистору
-
Температурный коэффициент сопротивления (ТКС)
-
Коэффициент старения β характеризует изменение сопротивления, которое вызывается структурными изменениями резистивного элемента за счет процессов окисления, кристаллизации и т. д:
-
Коэффициент напряжения Ки характеризует влияние приложенного напряжения на сопротивление. В некоторых типах резисторов при высоких напряжениях изменяется сопротивление. В непроволочных резисторах это обусловлено уменьшением контактного сопротивления между отдельными зернами резистивной пленки. В проволочных резисторах это обусловлено дополнительным разогревом проволоки при повышенных напряжениях
-
ЭДС шумов резистора. Электроны в резистивном элементе находятся в состоянии хаотического теплового движения, в результате которого между любыми точками резистивного элемента возникает случайно изменяющееся электрическое напряжение и между выводами резистора появляется ЭДС тепловых шумов. Помимо тепловых шумов существует токовый шум, возникающий при прохождении через резистор тока. Этот шум обусловлен дискретной структурой резистивного элемента. При прохождении тока возникают местные перегревы, в результате которых изменяется сопротивление контактов между отдельными частицами токопроводящего слоя и, следовательно, флюктуирует (изменяется) значение сопротивления.
Система обозначений и маркировка резисторов
С 1980 года
1 первый элемент — буквенный: Р — постоянный резистор, РП — переменный резистор, РН — набор резисторов;
2 второй элемент — цифра: 1 — непроволочный резистор, 2 — проволочный резистор;
3 третий элемент — цифра, обозначающая разновидность конструкции.
Например, Р2-15 означает: резистор постоянный, проволочный, 15-й вариант конструкции.
При маркировке вместо запятой в наборе цифр, означающих номинальное значение сопротивления, ставят букву, указывающую, в каких единицах выражено сопротивление: R (или Е) — в омах, К — в килоомах, М — в мегаомах, G — в гигаомах, Т — в тераомах. При этом ноль, стоящий до или после запятой, не ставят. После указания величины номинального сопротивления ставят букву, обозначающую допуск Например, резистор с сопротивлением 0,47 кОм и допуском ±20 % маркируют К47В или К47М. Помимо буквенно-цифровой применяется цветовая индексация номинального сопротивления и допуска на корпусе резистора (ГОСТ 28883—90). Вблизи одного из торцов корпуса наносят 4 цветных полоски: первая обозначает первую цифру номинала, вторая — вторую цифру номинала, третья — множитель; четвертая — величину допуска, цвет полосок стандартизован.
У металлических сплавов удельное сопротивление зависит не только от концентрации компонентов, образующих данный сплав, но и от типа образовавшегося сплава. гетерогенные структуры (механические смеси), твердые растворы с неограниченной или ограниченной растворимостью компонентов друг в друге в твердом состоянии, химические (интерметаллические) соединения. Максимальное значение р проявляется у сплавов, кристаллическая решетка которых максимально деформирована ения. В результате пластической деформации, вызванной холодной ОМД, зерна (и блоки в них) удлиняются и измельчаются, возрастает деформация кристаллической решетки и увеличиваются в ней дефекты: возрастает плотность дислокаций и концентрация вакансий, что приводит к улучшению механических свойств — увеличивается твердость и предел прочности на разрыв. Однако удельное сопротивление при этом также увеличивается. При рекристаллизационном отжиге металлов, подвергнутых холодной ОМД, зерна (и блоки в них) будут округляться и укрупняться, кристаллическая решетка выпрямляться, а концентрация дефектов в ней будет уменьшаться. Понизится твердость и предел прочности на разрыв. При упругой деформации, вызванной растяжением, амплитуды тепловых колебаний узлов кристаллической решетки увеличатся, в результате уменьшится λ, и возрастет ρ.
Влияние частоты напряжения.
Высокочастотный ток оказывается распределенным по сечению проводника неравномерно — большая его часть сосредоточивается у поверхности проводника. Это явление называют скин-эффектом. Скин-эффект характеризуется глубиной проникновения электромагнитного поля в металлический проводник: чем выше частота поля, тем на меньшую глубину оно проникает в проводник.
глубина проникновения поля ∆= 1/a = √ 2/ωγμoμ = 1/ √ƒπγμoμ
сопротивление квадрата его поверхности Rs = 1/γ∆
21. Высокоомные сплавы и их свойства. Удельное сопротивление металлических сплавов.
Материалы высокого сопротивления должны быть высокостабильными, иметь удельное сопротивление не менее 0,3 мкОм•м, очень низкий ТКρ и малую термо-ЭДС относительно меди. Металлические сплавы, образующие твердые растворы, по назначению разделяют на сплавы резистивные и нагревостойкие.
Резистивные сплавы широко используют в производстве проволочных резисторов, шунтов, реостатов, термопар и т.д. Самые распространенные среди них — медно-никелевые сплавы: манганин, константан и др.
-
Манганин — это сплав, состоящий из меди Си 85—89%, никеля Ni 2,5—3,5% и марганца Мп 11,5—13,5%. Примеси не должно быть более 0,9%. Удельное сопротивление манганина составляет 0,42—0,48 мкОм-м, предельно допустимая температура 200°С. Хорошо протягивается в тонкую проволоку диаметром от 0,02 до 6,0 мм, а микропровод в стеклянной изоляции производят диаметром в несколько мкм. Хорошо прокатывается в ленту толщиной 0,01—1 мм (ширина ленты 10—300 мм). Манганин применяют для изготовления образцовых (проволочных) резисторов, шунтов и некоторых измерительных приборов.
-
Константин — сплав, содержащий 56—59% меди Си, 39—41% никеля Ni и 1—2% марганца Мп, примеси — не более 0,9%. Удельное сопротивление р = 0,48—0,52 мкОм•м, значение ТКр близко к нулю и обычно имеет отрицательный знак. Может использоваться в реостатах и нагревательных элементах при температурах до 450—500°С. При быстром (3 с) нагреве константановой проволоки на воздухе до температуры 900°С на ее поверхности образуется тонкая пленка оксида, обладающая электроизоляционными свойствами.
Нагревостойкие сплавы используют для изготовления нагревательных элементов. К ним относятся сплавы на основе железа, никеля, хрома и алюминия. Высокая нагревостойкость этих сплавов обусловлена образованием на их поверхностях сплошной плотной оксидной пленки.
-
Нихромы — это сплавы системы Fe—Ni—Cr, содержащие Ni 55—78%, Cr 15—25%, Mn 1,5 и остальное Fe; удельное сопротивление равно 1,0—1,2 мкОм-м. При повышенном содержании железа эти сплавы называют ферронихромами. Нихромы обладают высокой технологичностью, легко протягиваются в тонкую проволоку и легко прокатываются в тонкую ленту. Это жаростойкие сплавы. Высокая нагревостойкость нихромов объясняется близкими значениями ТКЛР сплавов и их оксидных пленок.
-
Фехрали и хромали — это жаростойкие сплавы системы Fe—Cr—A1, содержащие с своем составе хрома Сг 12—15%, алюминия А1 3,5—5,5%, марганца Мп 0,7%, никеля Ni 0,6% и остальное железо Fe; удельное сопротивление равно 1,2—1,4 мкОм•м. Эти сплавы менее технологичны, более твердые и хрупкие, чем нихромы. Поэтому из них получают проволоку и ленты с поперечным сечением большим, чем из нихромов. Отличаются высокой стойкостью к химическому разрушению под действием различных газообразных сред при высоких температурах.
22. Влияние примеси на удельное сопротивление. Влияние размеров проводника на удельное сопротивление. (Пленочные проводники в микросхемах).
Влияние примеси на удельное сопротивление
Ч истые отожженные металлы имеют менее деформированную кристаллическую решетку, поэтому для них характерны большие значения λ, и, следовательно, у (малая величина ρ). Примеси, растворенные в металлах, деформируют кристаллическую решетку и вызывают большие изменения удельного сопротивления. Отсюда ρ металлов, содержащих растворенную примесь, всегда выше, чем ρ чистых металлов. У металлических сплавов удельное сопротивление зависит не только от концентрации компонентов, образующих данный сплав, но и от типа образовавшегося сплава. Гетерогенные структуры (механические смеси), твердые растворы с неограниченной или ограниченной растворимостью компонентов друг в друге в твердом состоянии, химические (интерметаллические) соединения. Максимальное значение р проявляется у сплавов, кристаллическая решетка которых максимально деформирована.
Влияние размеров проводника на удельное сопротивления
В металлических проводниках в виде тонких пленок, фольги или проволоки образуется мелкозернистая структура. Чем мельче зерно, тем больше суммарная удельная поверхность зерен. Наиболее дефектной частью зерна является его поверхность. Увеличение удельного сопротивления объясняется тем, что при кристаллизации металла на подложке в образовавшейся мелкозернистой пленке появляются многочисленные дефекты в виде вакансий, дислокаций, межблочных и межзеренных границ, пор и др. В результате уменьшается средняя длина свободного пробега электрона λ, и р возрастает. Для сравнительной оценки удельного сопротивления тонких металлических пленок принято сопротивление квадрата RD, через противоположные грани которого ток протекает параллельно поверхности RD = ρδ /δ.
Терморезисторы изготавливают из полупроводниковых материалов, диапазон изменения их ТКС — (-6,5...+70)%. Материал для создания терморезисторов должен удовлетворять следующим требованиям:
1.электронная проводимость материала и возможность регулирования ее,
2.стабильность характеристик материала в диапазоне рабочих температур,
3.простота технологии изготовления изделий,
4.материалы должны быть нечувствительными к загрязнениям в процессе технологического изготовления изделий.
Терморезисторы с отрицательным ТКС изготавливаются из оксидов металлов с незаполненными электронным. Если температура увеличивается, то электроны приобретают энергию в виде тепла, процесс обмена электронами у ионов становится интенсивнее, поэтому резко увеличивается подвижность носителей заряда.
и уровнями. Современные терморезисторы с отрицательным ТКС обычно изготавливают из следующих оксидных систем: никель-марганец-медь, никель-марганец-кобальт-медь, кобальт-марганец-медь, железо-титан, никель-литий, кобальт-литий, медь-марганец.
Тенденции развития современных материалов с отрицательным ТКС
1.получение более стабильных терморезисторов
2.расширение верхней границы рабочих температур.