Ответы - final (943730), страница 14
Текст из файла (страница 14)
В реальных ферро- и ферримагнетиках различные виды процессов намагничивания накладываются друг на друга. На процесс намагничивания, кроме того, влияют магнитострикция, механические напряжения, дефекты структуры и ряд других причин.
Магнитный гистерезис. Если предварительно размагниченный образец подвергнуть намагничиванию до состояния технического насыщения, то с увеличением напряженности магнитного поля Н магнитная индукция В будет изменяться в соответствии с кривой ОАБ рис. 14.8 и в точке А при Н = Hs достигнет значения индукции технического насыщения, или индукции насыщения Bs (см. рис. 14.7). Отрезок АБ является безгистерезисной частью зависимости В(Н). При уменьшении напряженности поля Н намагниченность образцауменьшается по кривой БАВr , и при Н = 0 индукция В не будет равна нулю. Эта индукция называется остаточной и обозначается Вr; с ней связано существование постоянных магнитов.
Остаточная индукция (остаточная намагниченность) обусловлена тем, что при размагничивании, когда H = 0, магнитные моменты доменов оказываются ориентированными вдоль оси легкого намагничивания, направление которой близко к направлению внешнего поля.
Для достижения полного размагничивания образца к нему необходимо приложить поле определенной напряженности и противоположное по знаку. Напряженность такого поля называют коэрцитивной силой Нс. При дальнейшем возрастании отрицательного поля индукция тоже становится отрицательной и в точке А' при B = — Bs, достигает значения индукции технического насыщения (В = — Bs). После уменьшения отрицательного поля, а затем увеличения положительного поля кривая перемагничивания опишет петлю, называемую предельной петлей магнитного гистерезиса, которая является важной технической характеристикой магнитных материалов.
Таким образом, предельная петля магнитного гистерезиса — это кривая изменения магнитной индукции при изменении внешнего магнитного поля от +Hs до —Hs, и обратно. Пользуясь предельной петлей магнитного гистерезиса, можно определить основные параметры материала: коэрцитивную силу Hс, индукцию насыщения Bs остаточную индукцию Вг и др. Площадь этой петли пропорциональна работе, затрачиваемой на перемагничивание образца за один цикл; она пропорциональна потерям на гистерезис (см. гл. 14.2.7.). Из рис. 14.8 видно, что в координатах В(Н) при H< Hs (или В < Вs) проявляется целое семейство петель магнитного гистерезиса, заключенных одна в другую.
Рис.14.8.Предельная петля магнитного магнитного гистерезиса
Поскольку ферримагнетики также обладают доменной структурой, поэтому рассмотренные процессы намагничивания и размагничивания (см. рис. 14.7 и 14.8) происходят в них аналогичным образом.
Коэрцитивная сила Нс является важной технической характеристикой магнитных материалов и как магнитная проницаемость μ зависит от суммарной удельной поверхности зерен, магнитной анизотропии, магнитострикции, механических напряжений, наличия примеси и других дефектов. Чем больше значения этих величин и меньше однородность структуры, тем больше Hс и меньше μ. Объясняется это тем, что поверхность зерен более дефектна, имеет более высокие внутренние напряжения кристаллической решетки, чем само зерно. Внутренние напряжения и дефекты при намагничивании препятствуют росту доменов и ориентации их магнитных моментов в направлении поля. В результате Hс возрастает, а μ снижается. С уменьшением размера зерен их суммарная удельная поверхность возрастает. Величину суммарной удельной поверхности зерен можно изменять механической и термической обработкой материалов. Материал, подвергнутый закалке или холодной деформации (прокатке, волочению и т.п.), образует мелкозернистую структуру, которая обладает большой суммарной удельной поверхностью зерен и соответственно большой Hс и малой μ. Материал, подвергнутый отжигу, наоборот, образует крупнозернистую структуру с небольшой суммарной удельной поверхностью зерен и соответственно с небольшой Hс и с высокой μ. Коэрцитивная сила листового ферромагнетика также увеличивается при уменьшении его толщины h (рис. 14.9), так как при уменьшении толщины h измельчается зерно и увеличивается суммарная удельная поверхность зерен.
Таким образом, если точка Кюри и индукция насыщения зависят только от химического состава магнитных материалов, то такие характеристики, как коэрцитивная сила Hс, магнитная проницаемость μ и площадь петли гистерезиса, являются структурночувствительными. Поэтому чем больше размер зерна (меньше суммарная удельная поверхность зерен) и более совершенна структура кристаллической решетки (меньше дислокаций, внутренних напряжений, примесей и других дефектов), тем меньше Яс и больше ц, а материал соответственно легче намагничивается и перемагничивается.
По величине коэрцитивной силы магнитные материалы разделяют на магнитомягкие и магнитотвердые. Граница этого раздела по значению Hс условная. Материалы, у которых Hс < 4 кА/м, относят к магнитомягким, у которых Hс > 4 кА/м — к магнитотвердым (ГОСТ 19693—74). Для магнитомягких материалов характерным является малое значение коэрцитивной силы; у промышленных образцов наименьшая Hс = 0,4 А/м. Поэтому они намагничиваются до индукции технического насыщения при невысоких напряженностях поля. Намагничивание происходит в основном за счет смещения доменных границ. У магнитомягких материалов высокая магнитная
475
проницаемость, малые потери на перемагничивание и узкая петля гистерезиса при высоких значениях магнитной индукции. Это легконамагничивающиеся материалы. Магнитомягкие материалы применяют в производстве сердечников катушек индуктивности, реле трансформаторов, электрических машин и т. п., работающих в постоянном и переменном магнитных полях.
Для магнитотвердых материалов характерным является широкая петля гистерезиса с большой коэрцитивной силой; у промышленных образцов наибольшая Hс≈800 кА/м. Магнитная проницаемость μ у них меньше, чем у магнитомягких материалов. У магнитотвердых материалов большая максимальная удельная магнитная энергия Wm которая пропорциональна произведению наибольших значений В и H на кривой размагничивания (см. гл. 15.2, формулу (15.7)). Намагничиваются они с трудом, но зато длительное время сохраняют сообщенную энергию. Намагничивание происходит в основном за счет вращения вектора намагниченности. Применяют магнитотвердые материалы для производства постоянных магнитов, в электрических машинах малой мощности, для записи и хранения цифровой, звуковой и видеоинформации и др.
Термины «магнитомягкие» и «магнитотвердые» не являются характеристикой механических свойств материалов. Существуют механически мягкие, но магнитотвердые материалы и, наоборот, механически твердые, но магнитомягкие материалы.
28. Магнитные потери. Потери на вихревые токи. Потери в катушках индуктивности.
Процесс перемагничивания магнитных материалов в переменном поле связан с потерями части мощности магнитного поля. Эту мощность, поглощаемую единицей массы магнитного материала и рассеиваемую в виде тепла, называют удельными магнитными потерями Р, которые, в свою очередь, складываются из потерь на гистерезис и динамические потери. Динамические потери вызываются прежде всего вихревыми токами и частично магнитным последействием (магнитной вязкостью).
Потери на гистерезис связаны с явлением магнитного гистерезиса и с необратимым перемещением доменных границ. Для каждого материала они пропорциональны площади петли гистерезиса и частоте переменного магнитного поля. Мощность потерь РГ, Вт/кг, расходуемая на гистерезис единицей массы материала, определяется формулой
Рг = η ƒ (Bм )n, (14.14)
где η— коэффициент, зависящий от природы материала; Вм — максимальная магнитная индукция в течение цикла; n — показатель степени, имеющий значение в зависимости от В в пределах от 1,6 до 2; ƒ— частота.
Чтобы уменьшить потери на гистерезис, используют магнитные материалы с возможно малой коэрцитивной силой (узкой петлей гистерезиса). Для этого путем отжига снимают внутренние напряжения, уменьшают число дислокаций и других дефектов и укрупняют зерно.
Потери на вихревые токи обусловлены электрическими токами, которые индуцируют в материале магнитный поток. Эти потери зависят от электрического сопротивления магнитного материала и формы сердечника. Чем больше удельное электрическое сопротивление магнитного материала, тем меньше потери на вихревые токи. Потери на вихревые токи пропорциональны квадрату частоты, поэтому на высоких частотах магнитные материалы с низким электрическим сопротивлением не применяют. Мощность потерь Рвт, Вт/кг, расходуемая на вихревые токи единицей массы, в общем виде определяется формулой
Рвт= ξ ƒ 2 (Bм ) 2, (14.15)
где ξ — коэффициент, зависящий от природы магнитного материала (в частности, от его удельного сопротивления ), а также его формы.
Для листовых образцов магнитного материала Рвт равна, кг/Вт:
Рвт = 1,64 h2 ƒ 2 (Bм ) 2/ dρ (14.16)
где Вм — максимальная магнитная индукция в течение цикла, Тл;ƒ— частота переменного тока, Гц; h — толщина листа, м; ρ — удельное электрическое сопротивление, Ом•м; d — плотность материала, кг/м3.
Поскольку величина Рвт зависит от квадрата частоты, на высоких частотах в первую очередь необходимо учитывать потери на вихревые токи. Для борьбы с вихревыми токами увеличивают электрическое сопротивление сердечников (магнитопроводов). Для этого их собирают из отдельных, электроизолированных друг от друга листов ферромагнетика с относительно высоким удельным сопротивлением или прессуют магнитный материал, находящийся в порошкообразном виде, с диэлектриком так, чтобы отдельные частицы ферромагнетика были разделены друг от друга прослойкой из диэлектрика (магнитодиэлектрики), или используют ферриты — ферримагнитную керамику, имеющую высокое удельное сопротивление — сопротивление того же порядка, что у полупроводников и диэлектриков. Ферриты представляют собой твердые растворы окисла железа с окислами некоторых двухвалентных металлов с общей формулой MeO•Fe2О3.
При уменьшении толщины листового металлического магнитного материала потери на вихревые токи снижаются, однако возрастают потери на гистерезис, так как при уменьшении толщины листа измельчается зерно и, следовательно, увеличивается коэрцитивная сила.С увеличением частоты потери на вихревые токи возрастают более интенсивно, чем потери на гистерезис (сравните формулы (14.14) и (14.15)), и при какой-то частоте начнут преобладать над потерями, вызванными гистерезисом.
Таким образом, толщина листового магнитного материала непосредственно зависит от частоты переменного тока, при которой работает изделие, и каждой частоте соответствует определенная толщина листа, при которой полные магнитные потери минимальны.
Потери, вызванные магнитным последействием (магнитной вязкостью), — это свойство магнитных материалов проявлять зависимость запаздывания изменения индукции, происходящее под действием изменяющегося магнитного поля, от длительности воздействия этого поля. Эти потери обусловлены в первую очередь инерционностью процессов перемагничивания доменов. С уменьшением длительности приложения магнитного поля запаздывание и, следовательно, магнитные потери, вызванные магнитным последействием, увеличиваются, поэтому их необходимо учитывать при использовании магнитных материалов в импульсном режиме работы.
Мощность потерь Рмп, вызванную магнитным последействием, нельзя рассчитать аналитически. Она определяется как разность между удельными магнитными потерями Р и суммой потерь на гистерезис Рт и вихревые токи Рт:
Рмп = Р - (Рг +Рвт). (14.16)