Главная » Просмотр файлов » Anti-Demidovich (Boyarchuk A.K.). Tom 4. Funkcii kompleksnogo peremennogo (2001)(ru)(T)(365s)

Anti-Demidovich (Boyarchuk A.K.). Tom 4. Funkcii kompleksnogo peremennogo (2001)(ru)(T)(365s) (940504), страница 13

Файл №940504 Anti-Demidovich (Boyarchuk A.K.). Tom 4. Funkcii kompleksnogo peremennogo (2001)(ru)(T)(365s) (Антидемидович) 13 страницаAnti-Demidovich (Boyarchuk A.K.). Tom 4. Funkcii kompleksnogo peremennogo (2001)(ru)(T)(365s) (940504) страница 132013-09-12СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 13)

20 видно, что в криволинейном треугольнике длина стороны, равная ~з — Ц, не превышает суммы длин двух других сторон, одна из которых есть дуга окружности радиуса ~з~, центральный угол которой равен ~ агах), а длина другой равна ~ (х~ — 1!. Знак равенства возможен вишь в случае, когда агд е = О. М вас. 19 29. Доказать тождество ~в, ч-з,Г+ ~г, — гз1' = 2(~х1~~ -ь ~х,~~) и выяснить его геометрический смысл. < Пусть х, = х, + (ры х, = х, -Ь (Ш. Тогда е, + гз — — х1+ хз+ 1(у, + уз), х~ — вз = х, — хз + ((ул — УИ, + ~2 ( + )з ( + )2 — 1' = (х — )' + (у — р ), (~, + ~~! + /~, — ~~! = 2(х, + хз) + 2(р~ + уз) = = 2Дх| -ь у, ) + (хз + уз)) = 2(~ в~1 + Ц ). В каждом параллелограмме сумма квадратов длин диагоналей равна сумме квадратов длин его сторон, и ЗО.

Доказать, что если )з,) = 1аз! = !хз~, то хз — вз 1 вз агв — = — агв —. ез — е, 2 ° Точки еы аз, хз лежат на некоторой окружности с центром в начале координат. Рассмотрим векторы вз — в,, вз — хы х,, хз (рис.21), угол агй-,"зг-*,-з = агй(хз — хз) — агБ(хз — х,) опирается на *3 дугу окружности, соединяющей точки х, и х,. центральный угол агв-,з = агй ез -агй х, опирается на тУ же самУю дУгУ.

По известной теоРеме из элементаРной геометРии шй-*з=лз = ' агвах *э *! з в 1. Комплексные числа и комплексная плоскость 39 31. Доказать, что если г, + гз + гз + г4 = О и ! гз( =? гз! = ~гз? = 1ггй то точки г,, гз, гз, г4 либо являются вершинами прямоугольника, либо попарно совпадают. м Все четыре точки лежат на окрузкности с центром в начале координат и при этом а~ +г, = -(аз+ г„), Векторы аз Ч-гз и -(аз+ад) совпадают но модулю и по направлению лишь в случае, когда, например, л, = л,, У гз г4 — — лз или г, = гз, гз = гя В первом случае точки л,, г„ гг гз, гз — вершины прямоугольника, М 3-г 32.

Найти вершины правильного п-угольника, если его центр находится в начале координат, а одна из вершин г, г известна. 1 м Известно, что значения (гг лежат на окружности ра- в диуса ~г~ и являются вершинами правильного п-угольника. Поэтому у=О, и — 1, м у .зг 33. Точки г, и гз — смежные вершины правильного и-угольника. Найти вершину г,, смежную с гз (гз Ф г|). , 3 , 3 М На Рис.22 видно, что гз — лз — — (г, — г,)ез . Следовательно, лз — — г, +(гз — г,)е* .

Если зз вершины занумерованы в обратном порядке, то г, = г, + (г, — г,)е ' 34. Даны три вершины параллелограмма г,, г,, г,. Найти четвертую вершину л„, противоположную вершине гз. У гз м Рассмотрим рис. 23. Поскольку векторы г, — г~ и гз — гз коллинеарны, и их модули равны, то л, — лз = г, — г,, л, = дх г~ + гз гз г ~,з 72 35.

При каком условии три попарно не совпадающие точ- хх ки г... г, лежат на олной прямой? м Если эти точки лежат на одной прямой, то аргументы 1 чисел гз — г, и гз — г, либо равны, либо отличаются на х. Поэтому отношение -'з: — "- является действительным числом. 3 1 Полученное условие является необходимым. Докажем его до- Х статочность. Пусть -*з=-'-з = а, а б )к. Тогда 1т -*': — '~ = О„что г- ~ *2 равносильно соотношению -"':-хз = -*з:-*-з.

уравнение прямой, у .зз зз г! 3 проходящей через точки (хз, у,) и (хз, уз), имеет вид ."--хь = —,* — -*~-. Точка (хз, уз) лежит на этой прямой. Ь Зб. Выяснить геометрический смысл указанных соотношений а)?г — 2~+?а+2~ = 5; б)?г — 21 — ?а+21 > 3; в) кег > с; г) !зпл < с. м а) Равенство определяет геометрическое место точек плоскости, сумма расстояний от которых до двух данных точек Рз = -2 и Рз = 2 есть постоянное число 5. Из аначитической геометрии известно, что это по определению эллипс, большая полуось которого равна -.

Фокусы 5 эллипса — точки -2 и 2. б) Геометрическое место точек на плоскости С, удовлетворяющих условию ~?г-2~ — ?г+2 ~ ~ = 3, является гиперболой, первая полуось которой равна —. Равенство ?г — 2? — (г + 2~ = 3 определяет з левую ветвь гиперболы, а неравенство 1г — 2? — |г + 2~ > 3 — ее внутренность. в) Неравенство имеет вил х > с, Это множество точек, в которое входят прямая х = с и полуплоскость, Расположенная справа от нее. г) Поскольку 1ш г = у, то, записав данное неравенство в виде у < с, приходим к выводу, что ему удовжтворяют все точки полуплоскости, расположенной снизу от прямой у = с. ° . Гл.

2. Комплексные числа в )Ууикции комплексвого переменного 3 г). Выяснить геометрический смысл неравенств а) а < агйг <)Э; б) а< агу(г — го) <)у ( — )г < а < Д ~< х). м а) Уравнение агу г = а задает луч, наклоненный к действительной оси под углом а. Неравенства а ( агйг < )у задают бесконечный сектор, заключенный мехгду лучами агйг = а и агу г = )3, причем сами лучи исключаются. б) ПеРенесем начало кооРдинат в точкУ г,, полыаа г — го — — ю. НеРавенства а ( агу м < )У зздают внутренность такого же сектора с вершиной в точке го.

М 38. Выяснить геометрический смысл следующих соотношений. а) ~г( = Кеа+ 1; б) Кег+ !гпг < 1; в) 1гп =О, Ке =О, г)1г — 1~>2~г — г~; г — гт г — гг д) )г) ( Р, )о Е Агйг, 0 ~ (у) < 2х; е) )4 < у), у) 0 Агу г, 0 < (о < 2я. х+ — + у — — <-. Множество точек плоскости С, определяемое этим неравенством, есть замкнугый круг радиуса — с центром в точке го — — — — + —,. 1г 1 .4 д) Пусть!г( = г. Кривая, уравнение которой г = (о, называется слирсгою Архимеда. Поскольку 0 < у) < 2х, то речь идет об одном витке этой спирали.

Данному неравенству г < у) удовлетворяет множество внутренних точек плоскости С, ограниченное сегментом О < х < 2х действительной оси и од!им витком спирали Архимеда. е) Неравенство определяет множество из предыдущего примера, дополненное интервалом (О, 2ог) действительной оси. М 39. Определить семейства линий в плоскости С, заданных уравнениями: 1 1 а) Ке — = с, 1пт — = с (-оо < с <+со); г г б) Ке г' = с, 1п) го = с ( — со < с ( +со); в) =Л(Л>0); г — гг~ г — г) г) агу — = а (-)г < а < )г).

г — гг семейство окружностей (х — лзг) + у' = г, гле Ке —,' — о 1щ —,. Равенство -т-р = с определяет с, = —, с Ф О, касающихся в начале координат ) М а) Пусть г = х + гу, тогда 14 = зггх)-ь у', ке г + 1 = х + 1 и исследуемое равенство принимает вид Ь/х) + у' = х Ч 1, После возведения в квалрат обеих частей последнего равенства получим у' = 2х + 1.

Это уравнение параболы с вершиной в точке (-1, 0), для которой луч )' = ((х, У) 6 К ~х > — —,', У = Оу является осью симметрии. б) Неравенство запишем в виде х + у < 1. Множество точек плоскости С, удовлетворяющих этому неравенству — полуплоскость, ограниченная прямой, уравнение которой х+у = 1. Начало координат принадлежит этой полуплоскости. в) Поскольку -*;-*;" = -*-:-"-)(созу) Ь)яп(о), у) б Агл-"; — *-", (о = З)) — у)т, у)) Е Агу(г — г)), )р) Е Агу(г — г,), го в первом случае имеем з!ну) = О, О)) — хт = й)г, а во втором — созе) = О, (о) — !от — — —" + 2йх.

В первом случае векторы г — г) и г — г, лежат на прямой, проходящей через точки г, и гт (исключая последнюю), во втором случае угол между этими векторами с точностью до кратного 2х равен х-). Поэтому множество Ке -';-';" = 0 является окружностью, диаметром которой служит отрезок, соединяющий точки г, и г, (при этом из окрухоюсти удалена точка г,).

)о = ' .г ) — ь ~) (( — ))).*.*. ') — ))'+ 'о) й) ) — ))'. Возведя обе части полученного неравенства в квадрат, после несложных преобразований находим: Ф 1. Комплексные числа и комплекспвя плоскость 41 мнимой оси. Если с = О, то х = О, т.е. семейство вклзочает в себя и мнимую ось. Равенз ство -р~~ = с определяет семейство окружное~ей х + (у+ -',з) = з, где с, = —,, с ~ О, касающихся действительной оси в начале координат, и включает в себя также действительную ось, поскольку при с = 0 у =О. б) Пусть * = х -ь зу, тогда зз = х — уз 4 з2ху, Ке аз = х' — уз, (таз = 2ху.

Если с Х О, то уравнения х — у = с и 2ху = с определяют семейства гипербож Если с = О, то уравнение х — у = 0 определяет пару прямых у = х и у = -х, а уравнение ху = 0 — пару прямых х = 0 2 3 и у=О. в) Пусть х = х + зу, х, = х, 4 зуз, хз = хз 4 зуз. Тогда равенство ! — ':*-з = Л (Л > 0) -з равносильно такому: (х — х,) + (у — у,)' = Л' ((х — х,)' ч- (у — у,)') . Каждая кривая — окруж- ность, являюшаяся геометрическим местом точек, отношение расстояний которых от точек х, и гз посюянно (охрулсность Алоллонол относительно точек зз и сз). г) Поскольку агу -*:-=' = агу(х — х,) — агу(з — х,) = а, -я < а < я, то это равенство определяет семейство дуг окружностей с концами в точках х, и х, (угол между векторами з — хз и г — хз равен а), В это семейство входит конечный отрезок с концами в точках хз и х, (при а = хя) и бесконечный отрезок, содержащий бесконечно удаленную точку (при а = 0).

м 40. Какие необходимые и достаточные условия того, чтобы уравнение х'+ 2ас + Ь = 0 с комплексными коэффициентами а и Ь имело: 1) действительные корни; 2) чисто мнимыс корни; 3) комплекснозначные корни. м 1) Необходимость. Пусть х, и хз — действительные корни.

Тогда по теореме Виста зз+ з=-2а, х~зз=Ь, аЕК, ЬЕК, 3 4а = зз-1- з,'-1-2Ь > 2;Яг~)-' + 2Ь > 4Ь, а" > Ь. Достаточность. Пусть а б К, Ь б К и а > Ь. Тогда нз формулы для нахождения корней з, з = — а х ч'а' — Ь следует, что х~ и сз — действительные числа, 2) Необходимость. Пусть х, и с, — чисто мнимые.

Тогда из формул Виста следует, что а — чисто мнимое, Ь вЂ” действительное. Поэтому 4а = з,'+хзз+ 2Ь < -2)Ь|+ 2Ь < 4Ь, откуда Ь>а. Достаточность. Если Ь > а' и а — чисто мнимое число, то из формулы для нахождения корней уравнения следует, что оба они чисто мнимые. 3) Уравнение второго порядка всегда имеет два комплексных корня. М 41. При каких значениях а корни уравнения х' 4 12 (1 4 зззЗ) с + а = 0 лежат на олной прямой? м Пусть корни этого уравнения з,, х,, зз лежат на одной прямой. Тогда л, — х, = Ь(зз — з,), Ь = сопи, й Е К.

Характеристики

Тип файла
DJVU-файл
Размер
4,7 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6451
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее