Главная » Просмотр файлов » Матем.анализ 3 семестр

Матем.анализ 3 семестр (928016), страница 2

Файл №928016 Матем.анализ 3 семестр (Лекции Галкина) 2 страницаМатем.анализ 3 семестр (928016) страница 22013-08-19СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Но возможны и менее очевидные приложения.

С помощью двойного интеграла можно вычислять площадь поверхности, определять статические моменты, моменты инерции и центр тяжести плоской области.

Вычисление площади поверхности с помощью двойного интеграла.


Пусть поверхность , площадь которой надо вычислить, задана уравнением F(x, y, z) = 0 или уравнением z = f(x, y).

Введем разбиение  на ячейки k, не имеющие общих внутренних точек, площадью vk. Пусть область  и ячейки k проектируются на плоскость OXY в область D и ячейки dk площадью sk. Отметим на ячейке dk точку Mk. В точке Qk (ячейки k), которая проектируется в точку Mk, проведем единичный вектор нормали nk {cosk, cosk, cosk} к поверхности  и касательную плоскость. Если приближенно считать равными площадь vk ячейки k и площадь ее проекции на касательную плоскость,

то можно считать справедливым соотношение vk cosk = sk. Выразим отсюда

vk=sk/ cosk. Будем измельчать разбиение при условии max diam k 0, что для кусочно-гладкой поверхности, не ортогональной плоскости OXY, равносильно max diam dk 0. Вычислим площадь поверхности как двойной интеграл

.

Сюда остается лишь подставить .

Если поверхность  задана уравнением F(x, y, z) = 0, то

Поэтому в этом случае , .

.

Если поверхность задана уравнением z = f(x, y), то уравнение это можно

свести к уравнению F(x, y, z) = 0 и применить выведенную формулу:

.

Пример. Вычислить площадь поверхности конуса , ограниченной плоскостями


.

.

Вычисление статических моментов, координат центра тяжести, моментов инерции.

Пусть задана плотность вещества плоской материальной области D (x, y). Выделим элементарную ячейку с массой dm и применим к ней известные формулы для материальной точки:

Статические моменты относительно осей OX, OY dmx = y dm = y (x, y) ds,

dmy = x dm = x (x, y) ds.

Моменты инерции относительно осей OX, OY dJx = y2 dm = y2 (x, y) ds,

dJy = x2 dm = x2 (x, y) ds.

Момент инерции относительно начала координат dJ0 = dJx + dJy.

Двойным интегралом по всей области D вычисляем те же характеристики для области D.

, , , , J0 = Jx + Jy.

Координаты центра тяжести , где - масса области D.

Пример. Вычислить координаты центра тяжести полукруга с заданной плотностью .

(это было ясно заранее, по симметрии полукруга относительно OYи независимости плотности от координаты x).

Поэтому .

Пример. Вычислить момент инерции полукруга с заданной плотностью относительно прямой .

.

Эта формула известна в теоретической механике.

Замечание о несобственных двойных интегралах.

Точно так же, как и в определенных интегралах, вводят несобственные двойные интегралы двух типов: интеграл от непрерывной функции по неограниченной области (первого рода) и интеграл от разрывной функции по ограниченной области (второго рода).

Интеграл первого рода определяют как предел последовательности двойных интегралов от непрерывной функции по «расширяющимся» областям, стремящимся к заданной неограниченной области. Если предел существует и конечен, то интеграл называется сходящимся, если предел не существует или бесконечен, то интеграл называется расходящимся.

Интеграл второго рода6 определяют как предел последовательности интегралов от непрерывной функции по «расширяющимся» областям, стремящимся к заданной области и исключающим точку разрыва. Если предел существует и конечен, то интеграл называется сходящимся, если предел не существует или бесконечен, то интеграл называется расходящимся.

Пример. Показать, что несобственный интеграл первого рода по области сходится при и расходится при .

Показать, что несобственный интеграл первого рода по области сходится при и расходится при .Вычислим этот интеграл по области .

.

=

=

Часто расширение математических знаний позволяет решать задачи, которые не получались старыми методами.

Пример. Вычислить интеграл Пуассона .

Неопределенный интеграл «не берется». Но двойной интеграл по области равен

I = .

С другой стороны, переходя к полярным координатам, получим

I = .

Поэтому = . По четности .

Лекция 3 Тройной интеграл.

Задача о массе пространственного тела.

Пусть есть некоторое пространственное материальное тело, занимающее область V, в каждой точке которой задана объемная плотность f(x, y, z). Надо вычислить массу пространственного тела.

Эта задача приводит к понятию тройного интеграла.

Введем разбиение области V на элементарные области, не имеющие общих внутренних точек (условие А) vk с малым объемом (обозначение области и ее объема обычно одно и то же, это принято уже более 200 лет и не вносит путаницы).

На каждом элементе разбиения – элементарной области отметим точку Mk(xk, yk, zk). Вычислим плотность в этой точке f(xk, yk, zk) = f(Mk) и предположим, что плотность постоянна в элементарной области. Тогда масса элементарной области vk приближенно равна = f(Mk) . Суммируя все такие массы элементарных областей (составляя интегральную сумму), приближенно получим массу области V

Для того, чтобы точно вычислить массу области, остается перейти к пределу при условии (условие B).

.

Так задача о массе пространственной области приводит к тройному интегралу7.

Введем некоторые ограничения на область интегрирования и подинтегральную функцию, достаточные для существования интеграла8.

Потребуем, чтобы функция f(M) была непрерывна в области V и на ее границе.

Потребуем, чтобы область V была замкнутой, ограниченной, пространственно-односвязной областью с кусочно-гладкой границей.

Область назовем пространственно-односвязной, если ее можно непрерывной деформацией стянуть в точку.

Теорема существования. Пусть область V и функция f(M)=f(x, y, z) удовлетворяют сформулированным требованиям. Тогда тройной интеграл существует как предел интегральных сумм.

.

Замечание. Предел этот не зависит9:

1) от выбора разбиения области, лишь бы выполнялось условие А

2) от выбора отмеченных точек на элементах разбиения

3) от способа измельчения разбиения, лишь бы выполнялось условие B.

Свойства тройного интеграла.

  1. Линейность
    а) = +

б) =
Эти свойства, как и для двойного интеграла, доказываются «через интегральные суммы». Составляют интегральную сумму для интегралов, стоящих в левой части равенства, в ней делают нужную операцию (это возможно, т.к. число слагаемых конечно) и получают интегральные суммы для интегралов в правой части. Затем, по теореме о предельном переходе в равенстве, переходят к пределу, и свойство доказано.

  1. Аддитивность (по множеству)
    = +

Доказательство проводится, как и ранее, через интегральные суммы с использованием замечания к теореме существования.

Разбиение выбирается и измельчается так, чтобы граница областей V, W состояла из границ элементов разбиения (это можно сделать, учитывая замечание). Тогда интегральная сумма для интеграла в левой части равенства равна сумме двух интегральных сумм, каждая для своего для интеграла в правой части равенства. Переходя к пределу в равенстве, получаем требуемое соотношение.

  1. , где – объем области V.
    Интегральная сумма для интеграла в левой части =

  2. Если f(x, y, z) g(x, y, z), то .
    Переходя к пределу в неравенстве (по теореме о переходе к пределу в неравенстве), получим требуемое соотношение.
    Следствие. Если f(x, y, z) 0, то 0.

  3. Теорема об оценке интеграла. Если m f(x, y, z) M, то mV MV.
    Интегрируя неравенство m f(x, y, z) M, по свойству 4 получим требуемое неравенство.

  4. Теорема о среднем. Пусть выполнены требования теоремы существования. Тогда
    Существует точка С в области V, такая, что f(C) = .

Доказательство. Так как функция непрерывна на замкнутом ограниченном множестве , то существует ее нижняя грань и верхняя грань . Выполнено неравенство . Деля обе части на получим . Но число заключено между нижней и верхней гранью функции. Так как функция непрерывна на замкнутом ограниченном множестве , то в некоторой точке функция должна принимать это значение. Следовательно, .

Вычисление тройного интеграла в декартовой системе координат.

(x,y )

(x,y)


Пусть пространственное тело проектируется на плоскость OXY в область D, а на ось OZ в отрезок [c, d].Пусть «верхняя» граница тела описывается уравнением поверхности z = (x, y), «нижняя» – уравнением z = (x, y).

Пусть элемент V пространственного тела V проектируется на плоскость OXY в область Dxy , а на ось OZ в отрезок [z, z+z]. Для того чтобы вычислять тройной интеграл как предел интегральных сумм, нужно в интегральной сумме перебирать эти элементы по определенному алгоритму.

Если сначала перебирать элементы в столбце над областью Dxy, от нижней границы до верхней (внутренний интеграл), а затем перемещать область Dxy в D (внешний двойной интеграл), то получим повторный интеграл .

Если сначала перебирать элементы в слое [z, z+z] (внутренний интеграл), а затем .перемещать слой на [c, d], (внешний интеграл), то получим повторный интеграл .И в том, и в другом случае тройной интеграл сводится к определенному и двойному интегралам.

Характеристики

Тип файла
Документ
Размер
2,46 Mb
Тип материала
Высшее учебное заведение

Список файлов лекций

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6451
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее