1. Ряды (853737), страница 6
Текст из файла (страница 6)
# (8.12), :1 2 2 Zl 2a20 2 l + l Xan + bn f (x) dx4n=1;l.. " (10.11) . ut 10.3. !. f'n (x)g " ", G a b ], " f (x) 0 bZb 21 2Z 2Xcn 'n (x) dx = f (x) dx(10:13)n=1 ).aa (.. J (10.8) - 10.4.. f'n (x)g { . ", G a b ],f (x) { " 1Xf (x) cn 'n(x)(10:14)n=1{ 3. " f (x) . f'n(x)g, 87Zbf (x) 'n (x) dxcn = Zbaa'n2 (x) dx n = 1 2 : : :{ 0"" 3. " f (x) f'n(x)g. 3. (10.14) *+ f (x) , 2ZbNXlim f (x) ; cn 'n (x) dx = 0:(10:15)N !1n=1a8 . 10.3. , "*+ G a b ] f'n (x)g ", , 6(10:14) *+ f (x) .
. & . f'n (x)g -, " f (x) (10.13), ..NXZblim cN !1 n=1 n a0bZ2Zb'n (x) dx = f 2 (x) dx ()2NXaZb1'2n (x) dxCA = 0:B@ f 2 (x) dx ; c2limnN !1 an=1 a, (10.7) # . (10.15),.. 3. (10.14) " f (x). ut8" . (10.10). 10.4.4 *+ (10.10)" " *+ , ..
*+ f (x) " 1 2 2 1 Zl 2a20 + X2 n=1 an + bn = l ;l f (x) dx88(10:16)( 9 (10:11) " ), a0 an bn {&**+ 6 *+ " (10:10), " * (10.12).(F. ).& 10.4 10.3 +. 10.2. F " f (x) (, , - G ;l l ] " f (x) ) 3.!1Xnna0an cos l x + bn sin l xf (x) 2 +n=1(a0 an bn { 0"" 3., " (10.12)) f (x) , ..32Zl 2NXann4f (x) ; 0 ;liman cos l x + bn sin l x 5 dx = 0:N !12n=1;l 10.1. &. "f (x) = x2 ; x 1 1X.
n=1 n4< @ 0"" 3. " (10.10) l = . ; " f (x) , 10.1 3.+ #. , .,bn = 0 n = 1 2 : : : :(10:17),.#. " (10.12) l = , ZZ21(10:18)a0 = f (x) dx = x2 dx = 23 2;0ZZ1n2an = f (x) cos l x dx = x2 cos n x dx n = 1 2 : : : ;0, + , an = (;1)n n42 n = 1 2 : : : :(10:19)89&. 0"" 3. (10.17){(10.19) " f (x) = x2 ; x , # (10.16)015 1 16 1 Z 21 @ 2 2 A2 + X1x2 4:=xdx==2 3 ; 5 ; 5n=1 n4& , 1 16 2 4 2 4 8 4X= 5 ; 9 = 45 Cn=1 n4.,1 1 4X= 90 : >4nn=1*#+, "!,1. %"<, " @ 10.1).2. 6 , (! %"<0( ) = 0 = 0a b] (.xf xx >x" 0 @ 0 ]0.3.
, " %"<, "! @ ] %"< "! - .4. " f n ( ) g { %"< "! @ ] ( ) { %"<, " - . " NX()=] (. 10.2).Nn n ( ) %"< ( ) @ b b >a b'xa bxn=1'xf xf xa b5. $%"" " -%%< G" (." 10.1).6. %"<(; 0( ) = ; +; 0 xf xxllx <lx 3 X0+ n sin3( ) = 2 +n cosn=1 "Txanal90xblnlx3=Zl ( );f x2T3( )xdx;l ; (. 8.1).7. 5; I -%%< G" %"< ( ), " @ ], f n ( ) g %"<, "! . E I ! f n ( ) g (. " 10.2).8.
5; I -%%< G" %"< ( ), " @ ; ], 214 cos 4 sin 44 cos4 sin4f xa b''xxf xl llxlxln:::lnxlx:::(. 10.1).9. ! %"<,"! (. 10.3).10. G" %"<, "! (. 10.4).11. $%"":) " ! ! %"<, "! 4) " G" %"<, "! (. "10.3).12. $%"" " ! 2 G" (. "10.3 10.2).13.
3" G" %"<(+2 ; 0( )=; 2 0 1X1 . 2 , "" 4k=0 (2 + 1)lf xxxx <x2. >k;0 5.3 X+cos+sin=n2 n=1 n= 2 ; 4 2 cos + 4 sin ; 94 2 cos 3 + 34 sin 3114XX113. ( ) = 8 cos(2(2 ++1)1)2 4=4 96 .k=0k=0 (2 + 1)6.3( )=Tx3( ) =Sxlla0f xlknakxlllxblxxnllk91xxllx: 11/@0 <8> -D0.0/ <8># + $ + $ -. " f (x), Ox, - + (;l l) (;1 +1), ..
+Z1j f (x) j dx . ; (;l l) ";1+ . + 3., " " 1Xf (x) =cn e i n x=l(11:1)n=;1Zl1(11:2)n = 2 l f (u) e ;i n u = l dx n = 0 1 2 : : :;l{ 0"" 3. " f (x)./, x " f (x), 0 3. (11.1) f (x + 0) +2 f (x ; 0) . (11.2) " (11.1), 1 ZlX1f (x) = 2 lf (u) e i n (x;u) = l du:n=;1 ;l l ! +1 :+X1 Zl1i n (x;u) = l du:f (x) = l!limf(u)e+1 2 l n=;1;lF , . . 0 . , +!1 = l !2 = 2l : : : !n = nl : : : C Q !n = !n+1 ; !n = l :; Zl+X11f (x) = 2 l!limQ !n f (u) e i !n (x;u) du:(11:3)+1 n=;1;l92', .# l +Z1i!(x;u)nf (u)edu f (u)ei !n (x;u)du,;1;l# # (11.3) +Z1+X11i !n (x;u) du =f (x) = 2 l!limQ!f(u)en+1 n=;1;1+X1= 21 l!limR (!n ) Q !n(11:4)+1 n=;1+Z1 R (!) = f (u) e i ! (x;u) du.
!, ;1 (11.4) . " R (!) (;1 +1), 0 +., (11.4) R (!), ..++Z1Z1 +Z111f (x) = 2 R (!) d ! = 2 d ! f (u) e i ! (x;u) du:(11:5);1;1 ;1 + " (11.5), + ., + . " f (x) " (11.5) .&, . 11.1. *+ f (x), " Ox, :+Z1) j f (x) j dx C;1) Ox *+ f (x) -C) *+ f (x) " , f (x + 0) + f (x ; 0) :2Zl! " +Z 1 +Z11f (x) = 2 d ! f (u) e i ! (x;u) du;1 ;1938 x 2 (;1 +1):(11:6)&, " (11.6), 6 " *./ " (11.6) 01+1+1ZZf (x) = p1e i x ! B@ p1e ;i ! u f (u) duCA d !(11:7)2 ;12 ;1 . 11.1.
3+Z11pS (! ) =e ;i ! u f (u) du ; 1 < ! < +1(11:8)2 ;1 " 6 ( " *+) " f (x). 3 j S (!) j ", "arg S (!) { * " *+ f (x). &. + S (!) = F G f ] (!) S = F G f ]. # (11.8) (11.7), " 11.1. 11.10. *+ f (x), " Ox, 11.1. ! " +Z1 i x !1f (x) = pe S (!) d ! = F ;1 G S ] (x)(11:9)2 ;1 ;1 < x < +1.3 (11.9) * " 6.
11.1. @ 3. . 3. "8> j x j < a>< hf (x) = > 05 h x = a(11:10)>: 0 j x j > a h a { +. .< ,.#. # (11.8), 3. ":+Z1Za11;i!uF G f ] (!) = S (!) = pe f (u) du = pe ;i ! u h du =2 ;12 ;a94v au;i!uia!;ia!uhee;e2ht 2 h sin a != p ;i ! = p =2i! !22;a( .. " (9.18)).&,vuuF G f ] (!) = S (!) = t 2 h sin! a ! ; 1 < ! < +1: (11:11)3 (11.9) " (11.11) . 3. " (11.10):u+1+1 vZZu11;1ix!ix!f (x) = F GS ](x) = pe S (!)d! = pe t 2 h sin! a! d! =2 ;12 ;1+Z1he i x ! sin!a ! d! ; 1 < x < +1: >=;1 $ +"7!#" I (7!#+ 3"$ < +).
*- " 6 F G f1 ] F G f2 ] C1 C2 { " , *+ c1 f1 (x) + c2 f2(x) " 6, " " +f1 (x), f2(x)F G c1 f1 + c2 f2 ] = c1 F G f1 ] + c2 F G f2 ]:F. 3. ."7!#" II (3" < + !"6). *+f (x) " 6 F G f ] (!) h { ". ! *+ fh (x) = f (x ; h), *+ f (x), " 6, " "F G fh ](!) = e ;i ! h F G f ] (!) ; 1 < ! < +1:95(11:12)&. 11.1, +Z11e ;i ! x f (x ; h) dx:(11:13)F G fh ](!) = p2 ;18 u = x ; h () x = h + u du = dx, (11.13)++Z1Z11;i!(h+u)F G fh ](!) = pef (u) du = e ;i ! h e ;i ! u f (u) du =2 ;1;1+Z1;i!h=ee ;i ! u f (u) du = e ;i ! h F G f ] (!);1. . " (11.12) . ut"7!#" III ( E F 4; G4!# ).
*+ f (x) " 6 S (! ) = F G f ] (! ) h { ." . ! " F G e ix h f (x) ](!) = F G f ] (! ; h) = S (! ; h) = S h (!):(11:14)&. 11.1, +Z11ixhe ;i ! x e ix h f (x) dx =F G e f (x) ](!) = p2 ;1+Z1 ;i (!;h) x= ef (x) dx = F G f ] (! ; h);1 (11.14). ut"7!#" IV (3" < + 3"7). " IR *+ f (x) - G a b ], *+ f 0 (x) { . IR, " F G f 0 ](!) = i ! F G f ] (!) ; 1 < ! < +1:(11:15) .
&. 11.1 " , +Z110F G f ](!) = pe ;i ! x f 0(x) dx =2 ;19601 x=+1 +Z11B;i!x= p @ef (x) x=;1; (;i !) e ;i ! x f (x) dxCA :(11:16)2;1+, ;i ! x f (x) = 0;i ! x f (x) = 0:limelime(11:17)x!+1x!;1; , " %,pj e ;i ! x j = j cos ! x ; i sin ! x j = cos2 ! x + sin2 ! x = 1 . " (11.17) ., lim f (x) = 0lim f (x) = 0:(11:18)x!+1x!;1&. " @.-N, ZxZx0f (t) dt = f (x) ; f (0) () f (x) = f (0) + f 0(t) dt:(11:19)000; f (t) { " , " (11.19) " f (x) x ! 1. .+Z1lim f (x) = f (0) + f 0(t) dt = A:x!+10+, A = 0.
E A > 0, . a , x > a f (x) > 05A.! +Z1, f (x) dx , 0 . &, x!limf (x) = 0.+11 , x!;1lim f (x) =0. 8., # (11.18), # (11.17) , " (11.16) # (11.15). ut 11.1. . k > 1 { . . ;, " f (x) , f 0(x), : : : , f k (x) IR, F G f k ](!) = (i !) k F G f ] (!) ;1 < ! < +1:97# + -& 3. " (11.6) . "e i ! (x;u) = cos ! (x ; u) + i sin ! (x ; u)+ .
+Z1 +Z11f (x) = 2 d ! f (u) cos ! (x ; u) + i sin ! (x ; u) du =;1 ;101+1+1+1ZZZ= 21 B@ f (u) cos ! (x ; u) du + i f (u) sin ! (x ; u) duCA d ! =;1 ;1;1+Z11= 2g1(! x) + i g2(! x) d !(11:20);1++Z1Z1g1(! x) = f (u) cos ! (x ; u) du g2(! x) = f (u) sin ! (x ; u) du:;1;1; " g1(! x) { , " g2(! x) { !, +++Z1Z1Z1g1(! x) d! = 2 g1(! x) d!g2(! x) d! = 0:;1;108., " (11.20) +Z1 +Z11f (x) = d ! f (u) cos ! (x ; u) du ; 1 < x < +1: (11:21);10 11.2. &, "(11.21), 6 *.&. 11.1, + " 3.. 11.2.
*+ f (x), " Ox, 11.1. ! " (11.21).,.#. " , # " (11.21) 98+Z 1 +Z11f (x) = d ! f (u) cos ! x cos ! u + sin ! x sin ! u du =;102vu+Z1 6 1 +Z1u2tp= d!4f (u) cos ! u du cos ! x +2;103 1 +Z1f (u) sin ! u du sin ! x 75 :+ p2 ;18.,vu+Z1u2tf (x)= a(!) cos ! x + b(!) sin ! x d! ;1 <x< +1 (11:22)0++Z1Z111f (u) cos ! udu b(!) = pf (u) sin ! udu (11:23)a(!) = p2 ;12 ;1 ; 1 < ! < +1:& 3. (11.22) + . "- 6.- -$ +. f (x) { (;1 +1) ".
; f (u) cos ! u {, f (u) sin ! u { " u, 0 " (11.23) vu++Z1Z1u22ta (!) = pf (u) cos ! u du = f (u) cos ! u du(11:24)2 00b (!) = 0 ; 1 < ! < +1 (11.22) , vu+Z1u2tf (x) = a (!) cos ! x d ! ; 1 < x < +1:099(11:25) 11.3.3 a (!), (11.24), -" 6 *+ f (x), + (0 +1). 3 (11.25) * -" 6.E f (x) { (;1 +1) ", f (u) cos ! u {, f (u) sin ! u { " u, 0 " (11.23) a (!) = 0 ; 1 < ! < +1vu+1+ZZ1u22tf (u) sin ! u du = f (u) sin ! u du(11:26)b (!) = p2 00 "(11.22) , vu+Z1u2t(11:27)f (x) = b (!) sin ! x d ! ; 1 < x < +1:0 11.4.