1. Ряды (853737), страница 5
Текст из файла (страница 5)
8.1. 8.28 S (x) 3. (8.17) " 2 l, f (x) G ;l l ]. K" " y = S (x) + . 8.2.F + 3. S (x) . , S (x + 2 l) = S (x) x. 8.,S (100 l) = S (0 + 50 2 l) = S (0) = f (0) = 0CS (151 l) = S (l + 75 2 l) = S (l) = f (l) = lCS (2245 l) = S (05 l + 112 2 l) = S (05 l) = f (05 l) = 05 l + l = 15 lCS (3477 l) = S (;03 l+1742 l) = S (;03 l) = f (;03 l) = 03 l;l = ;07 l: >70F , ". 3., . 8.7. 3 f (x) -0 G a b ], 0 " f (x) G a b ] (. 8.5). 8.6. *+ f (x) - G ;l l ], 6 " (8:6) G ;l l ], " " * (8.18). 8.3. . " f (x) - G ;l l ] . # (8.19).
; 3. " f (x) (8:6) f (x) + G ;l l ], .. (8.20) .*#+, "!,1. : %"< !0 ! @ ] (. 8.1)?2. : "0 %"< 0 ! @ ;1 1 ]:) ( ) = 2 ; 1 ( ) = 24) ( )= 2;1 ( )= ?3. %"< ( ) = 2( ) = ; 0! @ 0 3 ]?4. $%"" @ ] ! %"<. : %"< ! @ ] (. 8.2)?5. G" -%%< G" %"< ( ) @ ] %"< 1 2(. 8.3).n6. $%"" " G" (. " 8.1).7. , %"< 2 @ ; ] (. " 8.2).8. G" -%%< G" %"< ( ) 2 (. 8.4).9.
$%"" " G" %"< 2 (. " 8.3).a b' xxxx' xax' xx xxxxaa ba bf xa b' ' :::' :::ll lf xll7110. : ) "-!4 ) "- @ ] %"<. "0 0<0 - (. 8.5 8.6).11. "-! @ ] %"< (. 8.7).12. $%"" ! G" (. ! 8.5, 8.6).13. G"<0(;30( ) = 02 03 G" 2 = 6. % "! ( ) G" %"< @ ;3 3 ] (;1 +1). 6 "! (0)4 (97)4 (603)4 (;182). 14. G" %"< ( ) = sin 2 ; 6 cos2 0 5 (8.6) 2 = 2.a ba bf x< x << x <lSxSSSxf xSxl2. ) !4 ) !.3. = 4 5.1X(2 ; 1)4sin13. ( ) 1 +2=1 (2 ; 1)akf xxk48 0 ; 30>>1<X4(2 ; 1) = 2 03( )=1+sin>3=1 (2 ; 1)> 1 = 3 = 0:( + 6) = ( ) 2 IR4(0) = 14 (97) = 24 (603) = 14 (;182) = 0.14.
( ) = ;3 ; 3 cos + sin 2Skxxf xSSx< x <kSS< x <S x:72xxS xx x 9@/2 * <8> /1 / /1 <8/*=?. <8> - */802 /802,, 3. ", . , 0 . 9.1. 3 f (x), G ;l l ], , x 2 G ;l l ] f (;x) = f (x). 9.2. 3 f (x), G ;l l ], , x 2 G ;l l ] f (;x) = ;f (x).F+ . +. 9.1. ) E G ;l l ] "ZlZlf (x) , f (x) dx = 2 f (x) dxC0;l) G ;l l ] " f (x) Zl, f (x) dx = 0:;l . ) . f (x) { ". ;Zlf (;x) = f (x). f (x) dx ;l x = ;t dx = ;dt:ZlZ0Z0ZlZlf (x) dx = f (x) dx + f (x) dx = ; f (;t) dt + f (x) dx =00l;l;lZlZlZl000= f (t) dt + f (x) dx = 2 f (x) dx:) .
f (x) { ". ; f (;x) = ;f (x). + , ZlZ0Z0ZlZlf (x) dx = f (x) dx + f (x) dx = ; f (;t) dt + f (x) dx =00l;l;l73ZlZlZlZl0000= G ;f (t) ] dt + f (x) dx = ; f (t) dt + f (x) dx = 0: tu8 3. " 2 l()nn1C cos l xC sin l xC : : : C cos l xC sin l xC : : : :(9:1) 9.1. ) G ;l l ]*+ f (x) , 6 " (9.1) :1X(9:2)f (x) a20 + an cos nl xn=1" ZlZl22a0 = l f (x) dxC an = l f (x) cos nl x dx n = 1 2 : : : C (9:3)00) G ;l l ] *+ f (x) , 6 " (9.1) :f (x) " 1Xn=1an sin nl x(9:4)Zl2bn = l f (x) sin nl x dx n = 1 2 : : : :(9:5)0 . . f (x) { G ;l l ] ".
;, 8.4, 3. (9.1) !1Xnna0an cos l x + bn sin l x (9:6)f ( x) 2 +n=1 0"" 3. f (x) "ZlZlZl1n11a0 = l f (x)dxC an = l f (x) cos l xdxC bn = l f (x) sin nl xdx;l;l;l(9:7) n = 1 2 : : : :74) +, f (x) { ". ;, .nsin l x { ", f (x) sin nl x + " 0 9.1 " (9.7)0"" 3.
bn : bn = 0 (n = 1 2 : : :).8., (9.6) , 3. " f (x) (9.2). - , . cos nl x { ", f (x) cos nl x + " 0 " (9.7) 9.1 0"" 3. a0 an " (9.3).) +, f (x) { ". ;, .cos nl x { ", f (x) cos nl x " 0 9.1 " (9.7) 0"" 3. a0 an : a0 = 0 an = 0 (n = 1 2 : : :).8., (9.6) , 3. " f (x) (9.4). - , . sin nl x { ", f (x) sin nl x " 0 " (9.7) 9.1 0"" 3.
bn " (9.5). ut* -(, (0$ l) , + + . . ", (0 l). % + . 9.1 . " " G 0 l ] G ;l 0 ]. 8 . 9.2. G 0 l ] - -" *+ f (x), " xi (i = 1 2 : : : m) *+ " , * ":f (xi ) = f (xi ; 0) +2 f (xi + 0) :75!:) *+ f (x) (0 :l) , -1Xf (x) = a20 + an cos nl xn=1"0 < x < l(9:8)ZlZl22a0 = l f (x) dxC an = l f (x) cos nl x dx " n = 1 2 : : : C (9:9)00) *+ f (x) (0 l) , - :f (x) =1Xn=1bn sin nl x"0 < x < l(9:10)Zl2bn = l f (x) sin nl x dx " n = 1 2 : : : :(9:11)0 . .
f (x) { - " ", G 0 l ] (. 9.1).. 9.1. 9.2. 9.3) " F (x), f (x) (0 l) " G ;l l ] (. 9.2):8<0 < x < lF (x) = : f (f;(xx)) ; l < x < 0:76; F (x) - G ;l l ], 0 8.5 (. + 8.2) 3. (9.1) 2 l, 9.1 3. + . :1XF (x) = a20 + an cos nl x ; l x l(9:12)n=1ZlZl22a0 = l F (x)dxC an = l F (x) cos nl xdx n = 1 2 : : : : (9:13)00; F (x) = f (x) 0 < x < l, " (9.12) (9.8), " (9.13) { (9.9).) " G (x), f (x) (0 l) " G ;l l ] (. 9.3):8<0 < x < lG (x) = : ;ff((;xx) ) ; l < x < 0:; G (x) - G ;l l ], 0 8.5 (. + 8.2) 3.
(9.1) 2 l, 9.1 3. + . :1XG (x) = bn sin nl x ; l x l(9:14)n=1Zl2(9:15)bn = l G (x) cos nl x dx n = 1 2 : : : :0; G (x) = f (x) 0 < x < l, (9.14) (9.10), " (9.15) (9.11). ut 9.1. 3 f (x) = ; x +. (0 ):) 2 C) 2 .. " .77< ; " f (x) = ; x G 0 ], # . 9.2.) &. " (9.9) c l = , :2 2ZZ22(;x)22a0 = f (x) dx = ( ; x) dx = ; 2 = 2 = C000 ZZ222(;x)sinnxan = f (x) cos n x dx = ( ; x) cos n x dx = +n000nZn x = 2 (1 ; cos n ) = 2 (1 ; (;1) ) :+ 2 sinnn x dx = ; 2 cos n2 0 n2 n20&,8> n = 2 kn< 02(1;(;1))4a0 = C an ==>II ) n2: (2 k ; 1)2 n = 2 k ; 1 (k 2 N0, .
" (9.8) c l = , n11XX ; x = a20 + an cos nx = 2 + 2(1 ;n(;2 1) ) cos nx 0 < x < :n=1n=18.,1 cos(2k ; 1)xX4;x= 2 + (2k ; 1)2 0 < x < :k=1(9:16)8 S (x) (9.16) 2 - ", f (x) = ; x (0 ). K" y = S (x) 9.4.. 9.4. 9.578) &. " (9.11) c l = , :ZZ22bn = f (x) sin n x dx = ( ; x) sin n x dx =00 Z cos n x2(;x)cosnx222sinnx = 2 :=;;dx=;nnn n2 n&,000bn = n2 (k 2 NII )0, . " (9.10) c l = , 11XX ; x = bn sin n x = 2 sinnn x 0 < x < :(9:17)n=1n=18 H (x) (9.17) 2 - ", f (x) = ; x (0 ).
K" y = H (x) 9.5. >!$ - +. f (x) { G ;l l ] ".; 3. (9.1) (9.6), 0"" 3. f (x) " (9.7).,.#. " %e i ' = cos ' + i sin ' e ;i ' = cos ' ; i sin '(. i { ), :i';i 'i ' e ;i 'i';i 'sin ' = e ;2 ie = i ;e +: (9:18)cos ' = e +2 e 2 (9.18) " (9.6), i n x = l + e ;i n x = l 11 0 e i n x= l + e ;i n x = lXa;e0A=f (x) 2 + @an+ bn i22n=11 an ; i bn i n x = l an + i bn ;i n x = l !Xa0= 2++ 2 e:(9:19)2 en=179+0 = a20 Ccn = an ;2 i bn Cc;n = an +2 i bn :(9:20); (9.19) # 1 inx=l1XX;inx=lf (x) c0 + cn e+ c;n e=cn e i n x=l : (9:21)n=;1n=1&. " (9.7) " %, 0"" (9.20) (9.21):Zl1a0(9:22)0 = 2 = 2 l f (x) dxC;l0 l1lZZcn = an ;2 i bn = 21l B@ f (x) cos nl x dx ; i f (x) sin nl x dxCA =;l;l(9:23) n!ZlZln11= 2 l f (x) cos l x ; i sin l x dx = 2 l f (x) e ;i n x = l dx;l;l n = 1 2 : : : C0 l1lZZc;n = an +2 i bn = 21l B@ f (x) cos nl x dx + i f (x) sin nl x dxCA =;l;l(9:24) n!ZlZln11= 2 l f (x) cos l x + i sin l x dx = 2 l f (x) e i n x = l dx;l;l n = 1 2 : : : :3 (9.22), (9.23), (9.24) + P.
":Zl1(9:25)n = 2 l f (x) e ;i n x = l dx n = 0 1 2 : : : :;l8# (9.21) " * " 6 " f (x). -0"" cn , " (9.25), " &**+ 6 " f (x).80*#+, "!,1. ! ! %"< (. 9.1 9.2)2. , " @ ; ] %"< ( ) ZlZl, ( ) = 2 ( ) (. " 9.1, ).0;l3. , " @ ; ] %"< ( ) Zl, ( ) = 0 (. " 9.1, ).;l4.
E G" ; %"! -%%< G" 0 " @ ; ] %"< ( ) (. " 9.1, ).5. G"<0 ( ) = j j ; G" (9.1) 2 = 2 . B; "! ,1X "" (2 1; 1)2 .k=16. E G" ; %"! -%%< G" 0 " @ ; ] %"< ( ) (. " 9.1, ).7. G"<0 ( ) = ; G" (9.1) 2 = 2 .8. $%"" " %"<, (0 ):) "4) " (. " 9.2).9.
G"<0 ( ) = cos (0 5 ) (0 2):) "4) ".10. 5; G" %"< ( ) %.f x dxl lf xl lf xf x dxf x dxl lf xxlf xxkl lf xxf x < x < l lf xxf x112XX1=5. j j = 2 ; 4 cos(2(2 ;;1)1)2 ; 428.k=1k=1 (2 ; 1)1X7. = 2 (;1)n+1 sin ;.n=11 ( )X9. ) cos (0 5 )4) 8 sin2;1 .k=1 4xkxknxx < x < nxkxk81xk 10<8/*= /@822 *002.12> <8> /2, , , .
3. . , " 3. . . ./ .--( + 10.1. 3 f (x), G a b ], - *+ , f (x) f 2 (x) ZbZb 2 G a b ], .. f (x) dx f (x) dxaa ( " f (x) G a b ],ZbZb f (x) dx f 2 (x) dx { ).aa!, 2 (x) + g 2 (x)fj f (x) g (x) j 2 . " f (x) g (x) G a b ]. 0 Zba2ZbZbZbaaf (x) + g (x) dx = f (x) dx + 2 f (x) g (x) dx + g2 (x) dx2a, " + " . 1+ " ., ", G a b ] . "'1 (x) '2 (x) : : : 'n (x) : : :(10:1) .82 N (x) = 1 '1 (x) + 2 '2 (x) + + N 'N (x) =NXn=1n 'n (x) (10:2) N - (10.1), 1 2 : : : N { . 10.2.
F . " f (x) ZbN =2f (x) ; N (x) dx =aZbaf (x) ;NXn=12n 'n (x) dx(10:3) N (x) " f (x) G a b ] . : N 0"" 1 2 : : : N, N .#.F # + N " (10.2), .#. " : ZbZbZb 22 N = f (x) dx ; 2 f (x) N (x) dx + N (x) dx:aa, " (10.2) ZbaZbNXan=1 N = f (x) dx ; 2 f (x)+;2NXn=1Zb XNa n=12an 'n (x)NXm=1n 'n (x) dx+Zbm 'm (x) dx = f 2(x) dx;aZbN XNXan=1 m=1n f (x) 'n (x) dx +(10:4)Zbn m 'n (x) 'm (x) dx:a&. .. (10.1) G a b ] (.
8.1), (10.4) #:Zb n = f (x) dx ; 2a2NXn=1ZbNXan=1n f (x) 'n (x) dx +83Zbn '2n (x) dx =2a01bZN B ZbX= f 2 (x) dx + @2n '2n (x) dx ; 2 n f (x) 'n (x) dxCA :n=1aaabZZb(10:5) % 2n = '2n (x) dx +a , " (10.5)ZbZbn 'n (x) dx ; 2 n f (x) 'n (x) dx =22aa120b120bZZ= B@n % n ; 1 f (x) 'n (x) dxCA ; 12 B@ f (x) 'n (x) dxCA %n%naa #:120ZbN BX1f (x) 'n (x) dxCA ; n = f 2 (x) dx + @n % n ;Zba%nn=1a012N 1 BZbX; 2 @ f (x) 'n (x) dxCA :n=1 % na(10:6)/ ., " (10.6) #. 0"" 1 2 : : : N , .# 0 , Zb1n % n ; % f (x) 'n (x) dx = 0, .,n aZbf (x) 'n (x) dxZb1= cn n = 1 2 : : : Nn = % 2 f (x) 'n (x) dx = a Zbn a'2n (x) dxa.. (.
8.3) n { 0"" 3. " f (x) . (10.1).&, N , n . 0"" 3. " f (x) . (10.1).84; , . 0"" 3.. 10.1. f'n (x)g { " *+, G a b ](f (x) { " *+, ( N { " . 4 (10:2) N - "" f'n (x)g 7 (10:3) N - NXf (x) 6 *+Zbcn 'n (x)" f (x) 'n (x) dxn = Zban=1a'2n (x) dx&**+ 6 *+" Q N = minf g N =nZb"f (x)Zb NXan=1= f (x) dx ;2aNXn=1f'n(x)g. &2cn 'n (x) dx =Zbcn '2n (x) dx:2n = 1 2 : : : N" f (x) ;f'n (x)g,a(10:7) 2 . + 10.2. f'n (x)g { "- *+, G a b ].! *+ f (x), , " 1Xn=1ZbZbcn 'n (x) dx f 2 (x) dx22aa85(10:8)Zbf (x) 'n (x) dxn = a Zba'2n (x) dx"n = 1 2 : : :{ &**+ 6 *+ f (x) " f'n (x)g. 8 , f'n (x)g , 1Xn=1Zbcn f 2 (x) dx:2a@ (10.8) 9.
. & . (10.7), NZbNXZbNXZbZbcn 'n (x) dx f 2(x) dxn=1 an=1 aaa(10:9)@ 0 , . , (10.8), .. . (10.9) N ! 1, , (10.8) . ut 10.2, "()nn1C cos l xC sin l xC : : : C cos l xC sin l xC : : : (10:10).. G ;l l ], 8.2. 10.1. F " f (x) (, , - G ;l l ] " f (x) ) J1 2 2 1 Zl 2a20 + X(10:11)2 n=1 an + bn l ;l f (x) dxf (x) dx ;2cn 'n (x) dx 0 ()228622Zl1an = l f (x) cos nl x dx n = 0 1 2 : : : ;l(10.12)Zl1bn = l f (x) sin nl x dx n = 1 2 : : :;l{ 0"" 3. " f (x) (10.10). . F (10.10) J (10.8) a !2 Zl012 dx +01 bllZZn x dx + b2 sin2 n x dxCA Z f 2 (x) dx:@a2n cos2n1BX2 ;llln=1a;l;l&.