1. Ряды (853737), страница 3
Текст из файла (страница 3)
4.2).5. , n( ) %"<( ) , n ( ) ( ) 0 -.6. $%"" B; %"< ( 4.1).ff xDfxxf x3. $4 . %"< 1 = 0,( ) = 0 0 1.xf x< x40 5?0 <8/*=/0>/1 $ -( - , " { . , , + + ? 8 , 0 . 5.1. &. x + (x2 ; x) + (x3 ; x2) + : : : :< - + (. 4.1 4.4), x + (x2 ; x) + (x3 ; x2) + : : : G0 1], , (0 x < 1,f (x) = 01 x = 1., 0 { G0 1] ", x = 1: >! .1 5.1. *+ nX=1 un(x) " Ga b] Ga b], S (x) " Ga b]. . .
x0 2 Ga b] { . . @ ., S (x) x0./ . " > 0. , + ". N , n > N x 2 Ga b] (5:1)jS (x) ; Sn(x)j < 3" :, ,jS (x) ; Sn (x)j < 3"(5:2)(5:3)jS (x0) ; Sn (x0)j < 3" n0 > N { . " .4100. Sn (x) { ", ", " > 0 > 0, x 2 Ga b], jx ; x0j < , (5:4)jSn (x) ; Sn (x0 )j < 3" :@ , (5.2), (5.3) (5.4), 000jS (x) ; S (x0)j == j(S (x) ; Sn (x)) + (Sn (x) ; Sn (x0)) + (Sn (x0) ; S (x0))j jS (x) ; Sn (x)j+jSn (x) ; Sn (x0)j+jSn (x0 ) ; S (x0)j(5:5) 3" + 3" + 3" = " x 2 Ga b], jx ; x0j < . 1 0 . "S (x) x0 2 Ga b]. ut 5.1. , 5.1 .
#.00000000 , . ". , . 5.2. & 5.1 , ". , ", . 0 . 5.2. &a. 1Xarctg nx ; arctg(n ; 1)x :n=1< "un(x) = arctg nx ; arctg(n ; 1)x. , Sn(x):Sn(x) = arctg x + Garctg 2x ; arctg x] + Garctg 3x ; arctg 2x] + : : : ++ : : : + Garctg nx ; arctg(n ; 1)x] = arctg nx:428 S (x) 8>< =2 x > 0,S (x) = nlim!1 Sn(x) = nlim!1 arctg nx = >: 0 x = 0,;=2 x < 0.. S (x) . ", S (x) , 5.2.
> -( ". . 5.2. *+ 1Xn=1un(x):(5:6)1) un (x) (n = 1 2 : : :) (5.6) { " *+ Ga b](2) (5.6) Ga b], S (x) Ga b] & " " " (5.6), ZbaS (x)dx =1 ZbXn=1 aun (x)dx:(5:7) 5.1 S (x) (5.6) , . , Ga b]. , , " un(x) + Ga b]. n- Sn(x) (5.6): .Sn(x) = u1(x) + u2(x) + : : : + un(x):438 ZbaZbZbZbaaaSn(x)dx = u1(x)dx + u2(x)dx + : : : + un(x)dx:F " (5.7) ., ZbaZbS (x)dx = nlim!1 Sn(x)dx:(5:8)a,.
. " > 0. ; (5.6) S (x), N , . " > 0, n > N x 2 Ga b] jS (x) ; Sn(x)j < b ;" a :;. b bZbZZ S (x)dx ; Sn(x)dx = (S (x) ; Sn(x))dxaaaZbZb" jS (x) ; Sn(x)jdx b ; a dx = b ;" a (b ; a) = "aa . # (5.8). ut --( -( ; 5.2 . . 5.3. 1) *+ (5.6) Ga b](2) un (x) (n = 1 2 : : :) (5.6) " " Ga b](3) 1 0Xun(x) = u01(x) + u02(x) +n=1 Ga b],44: : : + u0n(x) + : : :(5:9) S (x) (5.6) **+ Ga b], " S 0 (x) " " " **+, S 0(x) = .1 0Xun(x):(5:10)n=18 (5.9) S (x):1 0XS (x) = un (x):n=1(5:11) 3) 5.3 S (x) { Ga b]".
,.#. 5.2, (5.11) Ga x], x 2 Ga b] { . ". Zx1 Zx 0Xun(t)dt:S (t)dt =an=1 aZx 0@, , un(t)dt = un(x) ; un(a) aZx 111XXXS (t)dt = Gun(x) ; un(a)] = un(x) ; un(a) = S (x) ; S (a):an=1n=1n=1; , .", , S (x), "" , S (x) = S 0(x). 7 . .. ut*#+, "!,1. : %" ! ! "! %"< (a 5.1)? .2. $%"" " %"< ( 5.2).3. $%"" " %%< %"< ( 5.3).45 6-// $ .
). * 6.1. 3. a0 + a1x + a2x2 + : : : + anxn + : : : =1Xn=0anxn(6:1) an { , " .a1 a2 : : : an { &**+ .3. a0 + a1(x ; x0) + a2(x ; x0)2 + : : : + an(x ; x0)n + : : : =1X= an(x ; x0)nn=0(6:2) " ./, (6.2) (6.1) x ; x0 = t.
0 .# (6.1).+ , + . . . , . ". , + . + . , + . +, . , . x = 0 (6.1) , . ; 1. 6.1 (0$). " (6.1) x = x0, (x0 6= 0), , " , x, jxj < jx0 j. " (6.1) x = x0 , x, jxj > jx0j. . . (6.1) 1Xx = x0, . . anxn0 : , n=046 , anxn0 0 , ., { :janxn0 j M n = 0 1 2 ::: (6:3) M > 0 { . .,. . x, jxj < jx0j 1ja0j + ja1xj + ja2x2j + : : : + janxnj + : : : = X janxnj:(6:4); n=0janxn j = janxn0 j x n M x n = M qn x0 x0 1Xn x q = x < 1: @ . M q , (0 < q < 1), , 0n=0 , (6.4), 0 6.1 , (6.1) .+ ., (6.1) x = x0, , x, jxj > jx0j. ; + (6.1) + x = x0.
# . .; . . ut; 6.1 . , . .+ , 1 , X . x = 0, n!xn. F., n=0.n+1(n+1)!jxj!1 n! jxjn = nlim!1(n + 1)jxj = 1nlim . x 6= 0, F x 6= 0./ +, 1 xn , X x, n! . , , . xn=0n+1n!jxjjxj = 0:lim=limn!1 (n + 1)! jxjn n!1 n + 147!, F , x . ., , . . ;1 < x < +1 + x = 0, . 6.2.
" (6.1) " ;1 < x < +1 x = 0, R, 0 < R < +1, 1) " (6.1) jxj < R(2) " (6.1) jxj > R.2 R , (;R R) { " (6.1). . $+ (6.1) D. + 0 + , ., + fjxjg .. ! R = supfjxjg. , R, x > R (6.1) .;. +, x < R (6.1) .. x < R.
, x0, jxj < jx0j < R. @ , 6.1, x < R . ; . ut;. + (6.1). 6.3. "an+1 = llimn!1 an " & ""0 l < +1(6:5)R " (6.1) 1l :R = +1R = 1l "l=048(6:6)R=0"l = +1. .:- 1Xn=0janjjxjn F-jajan+1j = jxj l:n+1j jxjn+1=jxjlimlimn!1 janjn!1 janj jxjnE l = 0, jxj l = 0 (6.1) x, .
R = +1.E l = +1 x =6 0, jxj l = +1 (6.1) x =6 0, . R = 0.E 0 < l < +1, jxj l < 1, . jxj < 1l (6.1) , jxj l > 1, . jxj > 1l (6.1) . 1 0 , R = 1l . ; . ut 6.4. "qnnlim!1 janj = l "0 l < +1 (6:7)R " (6.1) 1l :R = 1l (6:8)R = +1 " l = 0 R = 0 " l = +1.F. 6.4 . 6.3, . F . -#. 6.1. ; 6.2 (6.1) (;R R). ,, .1 n :X) x (;1 1). !, n=0 0 Cn1 xX) n (;1 1). % n=1 x = ;1, . 0 N, x = 1, .
0 C49" & "1 xnX (;1 1). % 2nn=11 1X 0 , n2 .) n=1* $ $ J , (6.1) (. 6.1). ,., .. 6.5. " (6.1) R > 0. ! " r , 0 < r < R, " (6.1) G;r r ]. . . r , 0 < r < R, { . ., 6.21 (6.1) x = r, X. janjrn. ;., , jxj r:n=0janxnj janjrn:1X% , +. janjrn n=0+ (6.1) G;r r]. 8., ,#, (6.1) G;r r] . ut 6.2. O r + .
. R, (;R R) (6.1)+ 1 X+ . . @, xn n=0 (;1 1), nnx Sn(x) = 1 ; x " n , x ! 1 , ., + . .# " > 0 x 2 (;1 1).& 6.5 6.6 .50 6.6.4 S (x) " (6.1) " . . . x0 2 (;1 1) { . - . !, r, 0 < r < R, jx0j r x0 2 G;r r]. 8 (6.1) G;r r], ., S (x) G;r r] (. 5.1). , , S (x) x0 2 G;r r]. 7 . ..
ut--( $ 8 . 6.7. 4 S(x) " (6.1) G0 x], jxj < R, R { (6.1). ," Zx0S (x)dx =1Xn=0n+1an nx + 1 :(6:9)$ , " (6.1) " G0 x], (jxj < R). . /" r + - jxj R : jxj < r < R. , 6.5 (6.1) G;r r] , G0 x]. !.. 5.2. ut 6.1. +. :) 1 +1 x = 1 ; x + x2 ; x3 + ::: C ) 1 +1 x2 = 1 ; x2 + x4 ; x6 + ::: :< G0 x], jxj < 1, +:23Zx dx) 1 + x = ln(1 + x) = x ; x2 + x3 ; ::: C035Zx dxxx) 1 + x2 = arctg x = x ; 3 + 5 ; ::: : >051 6.8. 4 S(x) " (6.1) "- S 0 (x) =1Xn=1(;R R).n anxn;1: , "-(6:10)$ , " (6.1) **+ " .
. . x0 2 (;R R) { . "- . F+, (6.1) + "". 0 ., r0 r, jx0j < r0 << r < R. 1Xn anxn;1(6:11)n=1 +, G;r0 r0].; r (6.1) , :janjrn M M = const, n = 1 2 : : : : ;. . x 2 G;r0 r0] !n;1n;1 n;1n;1n;1 r0Mnqn janx j n janjr0 = n janj rr q = rr0 < 1. &, (6.11) + +. 1XM n qn;1, , . Fn=1, . /, ,# (. 4.1) (6.11) G;r0 r0] ., (6.1) + "". 0 (.
5.3) , x0. ut11 xn+1 XX 6.3. an n + 1 n anxn;1, n=1n=0 "" (6.1), + , (6.1). , ,52 6.7 6.8 o, 0 + (;R R), , .# R. @ . (6.1), ., ""1 xn+11XX an n + 1 n anxn;1, n=0n=1., R + . .# . ; , + .$ 6.8 . 6.1. 8 S (x) (6.1), (;R R), , . "" (6.1) .*#+, "!,1. $%"" " C ( 6.1).2. D "0 " ?3. , ! .4. $%"" " " ( 6.2).5. $%"" ! ! " (! 6.3 6.4).6. $%"" " ( 6.5).7. $ (; )?8. $%"" " ! "! .( 6.6).9.
$%"" ! %%< ! (! 6.7 6.8).xR R1X! n2. . E n=01 nX3.n=0 !7. B , (. 6.2).xnn x ::53 7 ?0* -( $ . * " , , + " + . 7.1. 3 f (x) (1x0 ; R x0 + R), R > 0, x0 " Xan(x ; x0)n, 0 n=0 f (x), . .1Xf (x) = an(x ; x0)n:(7:1)n=0 7.2.. " f (x) "" x0. 00 (x0 )(n)ff02f (x0 )+ f (x0 )(x ; x0)+ 2! (x ; x0) + : : : + n(!x0) (x ; x0)n + ::: (7:2) ! " f (x) x0. 7.1.x0 *+ f (x) - " 1Xn=0an(x ; x0)n, .
. x " " f (x) =1Xn=0an(x ; x0)n:(7:3)! & " " ! *+ f (x), &**+ an " " * !(n)an = f n(!x0) n = 0 1 2 ::: :54(7:4), 6.1 " f (x) "" x0 1Xf (n) (x) = k(k ; 1) ::: (k ; n + 1)ak (x ; x0)k;n (7:5) .k=n n = 1 2 ::: : , , x = x0, f (n) (x0) = n! an .,(n) (x )fan = n! 0 :7 . .. ut&, , " f (x) x0 , 0 ; " f (x) , ., 0 + :00 (x0)(x ; x0)2 + : : : +f (x) = f (x0 ) + f 0 (x0)(x ; x0) + f 2!(7.6)(n) (x )f0+ : : : + n! (x ; x0)n + : : : :.