On Generalized Signal Waveforms for Satellite Navigation (797942), страница 7
Текст из файла (страница 7)
171Efficiency Parameters of GPS L1 signals ...................................................... 203Efficiency Parameters of Galileo E1 signals.................................................. 203Spectral Separation Coefficients in E1/L1 ..................................................... 204Spectral Separation Coefficients in E6........................................................... 205Spectral Separation Coefficients in E5........................................................... 205Spectral Separation Coefficients in E1/L1 ..................................................... 206xvList of TablesTable 5.7.Table 5.8.Table 5.9.Table 5.10.Table 5.11.Table 5.12.Table 5.13.Table 5.14.Table 5.15.Table 6.1.Table 6.2.Table 6.3.Table 6.4.Table 6.5.Table 6.6.Table 6.7.Table 7.1.Table 7.2.Table 7.3.Table 7.4.Table 7.5.Table 7.6.Table 7.7.Table 7.8.Table J.1.Table J.2.Spectral Separation Coefficients in E6...........................................................
207Spectral Separation Coefficients in E5........................................................... 207Spectral Separation Coefficients in E1/L1 ..................................................... 208Spectral Separation Coefficients in E6........................................................... 209Spectral Separation Coefficients in E5........................................................... 209L1 GLONASS C/A Code Self SSCs.............................................................. 210L1 GLONASS P-Code Self SSCs ..................................................................
210SSC between Galileo E5 and GLONASS L3................................................. 211Spectral Separation Coefficients of some signals of interest ......................... 212Spectral Separation Coefficients with and without data ................................ 215Spectral Separation Coefficients .................................................................... 217BPSK(1) SSC [dB-Hz] computed between the averaged spectra of SVN 1 andSVN 2 .............................................................................................................
219BOC(1,1) SSC [dB-Hz] computed between the averaged spectra of SVN 1 andSVN 2 ............................................................................................................. 222Galileo E1 OS SVN 1 first harmonics ........................................................... 224Data MBOC(6,1,1/11) SSC [dB-Hz] between the averaged spectra .............
225Relative position of the data flip of the interfering signal.............................. 235Power Efficiency of Linear Modulation......................................................... 251Chip combinations and correlation for majority combining of three codes... 257Chip combinations and correlation for linear majority combining ................ 260Power Distribution of the CASM and Interplex multiplexing .......................
277Phase states of the Interplex modulation as a function of code and data inputs .......................................................................................................................... 285Power distribution of Interplex with OS and PRS ......................................... 286Compensated power distribution.................................................................... 287Power Efficiency of CASM ........................................................................... 290Value of the signal s(t) as a function of the different code inputs..................
357Values of the Inter-Modulation Signal (IM) to achieve a constant envelope 358xviList of AcronymsList of AcronymsAltBOCAlternative Binary Offset CarrierASAnti-SpoofingAWGNAdditive White Gaussian NoiseBCSBinary Coded SymbolsBOCBinary Offset CarrierBPSKBinary Phase Shift KeyingCASMCoherent Adaptive Sub-carrier ModulationCASTCChina Aerospace Science and Technology CorporationCBCSComposite BCSCBOCComposite Binary Offset CarrierCCIRComité Consultatif International des Radio CommunicationsCDMACode Division Multiple AccessCNESCentre National d’Études SpacialesCOSPASCOsmicheskaya Systyema Poiska Avariynich SudovCPSDCross Power Spectral DensityCRLBCramér Rao Lower BoundCSCommercial ServiceDACDigital to Analog ConvertersDDMADoppler Division Multiple AccessDLLDelay Lock LoopDMEDistance Measuring EquipmentDPDot ProductDSSSDirect Sequence Spread SpectrumEGNOSEuropean Geostationary Navigation Overlay ServiceEMLPEarly Minus Late PowerENSSEuropean global Navigation Satellite SystemEUEuropean UnionFDMAFrequency Division Multiple AccessxviiList of AcronymsFFTFast Fourier TransformFHSSFrequency Hopping Spread SpectrumFIRFinite Impulse Response FilterFLLFrequency Lock LoopFOCFull Operational CapabilityFSKFrequency Shift KeyingGAGANGPS Aided GEO Augmented NavigationGATEGerman Galileo Test and Development EnvironmentGBASGround Based Augmentation SystemGEOGeostationary Earth OrbitGJUGalileo Joint UndertakingGLONASSGLObal NAvigation Satellite SystemGMVGeneralized Majority VotingGNSSGlobal Navigation Satellite SystemGPSGlobal Positioning SystemGRASGround-Based Regional Augmentation SystemGRRGalileo Ground Reference ReceiverGSAEuropean GNSS Supervisory AuthorityGSSGalileo Sensor StationGSLVGeostationary Satellite Launch VehicleGSOGeoSynchronous OrbitGSTBGalileo System Test BedGSVFGalileo Signal Validation FacilityGTGround TransmittersHPHigh PrecisionHPAHigh Power AmplifierICAOInternational Civil Aviation OrganizationICDInterface Control DocumentICGInternational Committee on GNSSxviiiList of AcronymsI&DIntegrate and DumpIGSOInclined Geosynchronous OrbitIOCInitial Operational CapabilityIOVIn-Orbit ValidationIRNSSIndian Radio-Navigation Satellite SystemISIInter Symbol InterferenceISROIndian Space and Research OrganizationITUInternational Telecommunications UnionJTIDSJoint Tactical Information Distribution SystemKMFKey Management FacilityL1CL1 Civil SignalL2 CLL2 Civil Long SignalL2 CML2 Civil Moderate SignalLOCLinear Offset CarrierMAMilitary AcquisitionMBOCMultiplexed Binary Offset CarrierMCSMultilevel Coded SymbolsMEOMedium Earth OrbitMIDSMultifunctional Information Distribution SystemMLSMicrowave Landing SystemMMSSSMulti-Mode Spread-Spectrum Sub-carrier ModulationMSASMTSAT Spacebased Augmentation SystemMTMilitary TrackingMTSATMultifunctional Transport SATelliteMVMajority VoteNASNational Airspace SystemNRSCCNational Remote Sensing Center of ChinaNRZNon Return to ZeroNSCCNational Security Compatibility CompliancexixList of AcronymsOCOffset CarrierOSOpen ServicePDFProbability Density FunctionPLPseudoLitePLLPhase Lock LoopPPSPrecise Positioning ServicePRNPseudo Random NoisePRNGPseudo Random Noise GeneratorPRSPublic Regulated ServicePSDPower Spectral DensityPSKPhase Shift KeyingPSWFProlate Spheroidal Wave FunctionsQPSMQuadrature Product sub-carrier ModulationQZSSQuasi-Zenith Satellite SystemRCFRaised Cosine FilterRISDERussian Institute of Space Device EngineeringRFRadio FrequencyRFSARussian Federal Space AgencyRNSSRegional Navigation Satellite SystemsRTCARadio Technical Commission for AeronauticsRXReceiverSASelect AvailabilitySARSearch and RescueSARPStandards and Recommended PracticesSARSATSearch and Rescue Satellite Aided TrackingSBASSatellite-Based Augmentation SystemsSCPLSingle Chip PseudoLitesSGLSSpace Ground Link SubsystemSISSignal In SpacexxList of AcronymsSMCSSinosoidal Multilevel Coded SymbolsSNIRSignal to Noise plus Interference RatioSNRSignal to Noise RatioSOCSinusoidal Offset CarrierSPSStandard Positioning ServiceSRRCSquared Root Raised CosineSSSpread SpectrumSSCSpectral Separation CoefficientsSTFSignal Task ForceSVSpace VehicleSVNSpace Vehicle NumberTACANTactical Air Navigation SystemTBDTo Be DeterminedTCSTertiary Coded SymbolsTDMATime-Division Multiple AccessTMBOCTime Multiplexed Binary Offset CarrierTMRTriple Modular RedundancyTXTransmitterUEREUser Equivalent Range ErrorUREUser Range ErrorsUSUnited StatesUTCSUnilateral Tertiary Coded Symbols symbolsWAASWide Area Augmentation SystemWG AWorking Group AWG 1Working Group 1xxiList of AcronymsxxiiIntroduction1.
IntroductionSeven years ago, the U.S. Global Positioning System was the only operative Global SatelliteSystem (GNSS) worldwide. The GLONASS constellation had dwindled down to sevensatellites. Final approval and funding of Europe’s Galileo program was yet to be achieved.Since then, Russia has gone a long way towards rebuilding and modernizing GLONASS.Galileo has put its two first experimental GNSS satellites, GIOVE-A and GIOVE-B, intospace and China has announced plans to build a full-fledged GNSS of its own, Compass.Today there is not any more a sole global positioning system and the coexistence betweendifferent GNSSes particularly challenges engineers to understand how the coexistence ofcurrent and future signals can be guaranteed.
As the evolution of the different navigationsystems mentioned above has shown, all modernized GNSSes provide more complex signalwaveforms compared to the past and signal design has become a topic of great interest andsubject to intensive research. This thesis will analyze the problems and challenges that thisnew world poses from the point of view of the signal structure, describing how futuregeneralized GNSS signal waveforms could look like.1.1Objectives of this ThesisThe first main objective of this thesis is the derivation of a generally valid theoretical modelunder which all current and future navigation signals can be described.