On Generalized Signal Waveforms for Satellite Navigation (797942), страница 5
Текст из файла (страница 5)
107GMSK generation scheme ............................................................................. 107Generalized Multilevel Coded Symbols (GMCS) ......................................... 109Chip waveform of TOCsin(1,1) for a dwell time ρ .........................................
111Chip waveform of TPSK (1) for a dwell time ρ ............................................ 112Time domain representation of a sine-phased BOC8(fs , fc) ........................... 114Power Spectral Density of BOC(2,2) versus BOC8(2,2) ............................... 115Autocorrelation Function of BOC8(2,2)......................................................... 116Power Spectral Density of some studied PRS alternatives ............................ 117Cross Power Spectral Density of PRS alternatives with GPS M-Code ......... 118Autocorrelation Function of BOC8(15,2.5).................................................... 122Example of waveform for a general 8-PSK BCS signal ................................
122Equivalence between 8-PSK BCS(1,-1) and 8-PSK BOC ............................. 122CBCS representation in the time domain....................................................... 124Modified 8-PSK modulation with constant envelope for the optimized signal ........................................................................................................................... 126Pseudo-random time multiplexing of BCS and BOC(1,1) in CBCS solution 126Cross-correlation between CBCS and a BOC(1,1) receiver .......................... 127CBCS and local BOC(1,1) discriminator function......................................... 128Model to measure the delta correlations between CBCS and BOC(1,1) .......
128Power Spectral Density of Galileo and GPS signals in E1/L1....................... 130Power Spectral Distribution of BOC(1,1) and BCS within CBCS ................ 131Ranking of CBCS solutions in terms of multipath mitigation potential ........ 131Multipath error envelopes for different Galileo signal candidates................. 134Running average multipath errors for different Galileo signal candidates ....
135Cramér Rao Lower Bound of E1 OS signals ................................................. 135Root Mean Square Bandwidth (RMS) of studied OS candidate signals........ 140Decay of the envelopes of the power spectral densities of BOC(1,1)............ 143GPS and Galileo Spectra in E1/L1................................................................. 143TMBOC time representation..........................................................................
149CBOC and TMBOC Autocorrelation Function ............................................. 151BOC(1,1), CBOC and TMBOC Cramér Rao Lower Bound.......................... 152CBOC data chip with BOC(1,1) and BOC(6,1) in-phase .............................. 153CBOC pilot chip with BOC(1,1) and BOC(6,1) in anti-phase.......................
153MBOC Multipath Envelopes.......................................................................... 154MBOC Multipath Running Average Error..................................................... 154Squaring Loss as a function of the SNR after coherent integration ............... 160Pseudorange Code Measurement Accuracy................................................... 163Autocorrelation Function of BPSK(1), BOC(1,1) and MBOC(6,1,1/11) ...... 164xiList of FiguresFigure 4.60.Figure 4.61.Figure 4.62.Figure 4.63.Figure 4.64.Figure 4.65.Figure 4.66.Figure 4.67.Figure 4.68.Figure 4.69.Figure 4.70.Figure 4.71.Figure 4.72.Figure 4.73.Figure 4.74.Figure 4.75.Figure 4.76.Figure 5.1.Figure 5.2.Figure 5.3.Figure 6.1.Figure 6.2.Figure 6.3.Figure 6.4.Figure 6.5.Figure 6.6.Figure 6.7.Figure 6.8.Figure 6.9.Figure 6.10.Figure 6.11.Figure 6.12.DLL Tracking Threshold of BPSK(1) ...........................................................
167DLL Tracking Threshold of BOC(1,1) .......................................................... 167DLL Tracking Threshold of MBOC(6,1,1/11)............................................... 167DLL tracking threshold for the DP Discriminator ......................................... 168DLL tracking threshold for the DP Discriminator ......................................... 169DLL tracking threshold for the DP Discriminator .........................................
169DLL tracking threshold for the DP Discriminator ......................................... 169Maximum C/N0 Degradation due to Intersystem Interference....................... 172Reduction of the maximum C/N0 Degradation due to Intersystem Interferencewhen MBOC is used instead of BOC(1,1) ..................................................... 173Maximum C/N0 Degradation due to Intersystem Interference....................... 1732Spectrum c k [W] of the complex sub-carrier ............................................
175Shapes of data and pilot sub-carriers.............................................................. 177Raised Cosine Filter for different roll-off factors .......................................... 179Raised Cosine pulses for different roll-off factors ......................................... 179Harmonic fading of BOC(1,1) using a 4-level sub-carrier............................. 187Four-Level Waveform to realize the fading effect......................................... 188Pseudo-random multiplexing of BCS and BOC using Interplex, FadedHarmonics Interplex and modified Interplex for CBCS................................. 190SSC Correlator Model for the Spectral Separation Coefficients calculations 191Spectral Separation Coefficient between BOC(1,1) and M-Code .................
197Self Spectral Separation Coefficient of C/A Code......................................... 199Power spectral density of GPS C/A code SVN 1 with data ........................... 214Power spectral density of GPS C/A code SVN 1 with data ........................... 214Product of C/A Code Spectra modulated with codes SVN 1 and SVN 2 ......
215Product of BOC(1,1) Code Spectrum modulated with SVN 1 and M-Codesmooth spectrum............................................................................................. 216Comparison of the product of PSDs between BOC(1,1) and M-Code .......... 216Averaged PSD of GPS C/A code SVN 1 ....................................................... 218Comparison between the ideal PSD of BPSK(1) with random data at 50 spsand the averaged PSD..................................................................................... 218Low frequencies comparison between the ideal PSD of BPSK(1) with data at50 sps and the averaged PSD of all 5 data bit combinations .......................... 219Power Spectral Density of GPS C/A Code SVN 1 with data and differentnumber of bits considered...............................................................................
221PSD of GPS C/A code SVN 1 that results from taking the 5 bits combination[1 1 1 1 -1] at low frequencies ........................................................................ 221Averaged PSD of GPS C/A code and BOC(1,1) ........................................... 222Comparison between the averaged (all combinations of 5 bits) PSD of GPSxiiList of FiguresFigure 6.30.Figure 6.31.Figure 6.32.Figure 6.33.Figure 6.34.Figure 6.35.Figure 6.36.Figure 6.37.Figure 6.38.Figure 7.1.Figure 7.2.Figure 7.3.Figure 7.4.Figure 7.5.C/A code and BOC(1,1) with SVN 1 at low frequencies............................... 223Averaged (5 bits) PSD of BOC(1,1) with SVN 1 at low frequencies............
224Averaged PSDs of MBOC(6,1,1/11) in phase and anti-phase channels ........ 225Averaged SVN 1 PSD of MBOC(6,1,1/11) – Data + Pilot............................ 226Power Spectral Density of the BPSK(1) modulation ..................................... 229ACF of an ideal code of finite length ............................................................. 229Difference between the even and odd ACFs ..................................................
230GPS C/A Code Autocorrelation Function...................................................... 231Power Spectral Density (not normalized) of an ideal code sequence that repeats20 times within one data bit............................................................................ 232Power spectral Density for ideal code sequence with M=20 ......................... 233Convolution between the linear even correlation and the even train of Diracpulses to form the even periodic correlation................................................... 233Average odd linear autocorrelation ................................................................
236Convolution between the linear odd correlation and the odd train of Diracpulses to form the odd periodic correlation .................................................... 236Normalized periodic odd correlation with M=20........................................... 237Normalized Even and Odd Code Power spectral Density for M=20 .............