Главная » Просмотр файлов » Отзывы оппонентов2

Отзывы оппонентов2 (785793)

Файл №785793 Отзывы оппонентов2 (Нейросетевое моделирование адаптивных динамических систем)Отзывы оппонентов2 (785793)2019-03-12СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

ОТЗЫВ официального оппонента доктора технических наук, профессора Харькова Виталия Петровича на диссертацию на соискание ученой степени доктора технических наук ТЮМЕНЦЕВА Юрия Владимировича, выполненную на тему: "Нейросетевое моделирование адаптивных динамических систем". Специальность 05.13.01. Системный анализ, управление и обработка информации (авиационная и ракетно-космическая техника). Актуальность выполненной диссертации обусловлена следующими обстоятельствами. Расширение круга решаемых задач пилотируемыми ЛА и беспилотными летательными аппаратами ~БЛА), включая и космические аппараты, в котором значительную часть составляют задачи военного и оборонного значения, предполагает и повышение, в первую очередь, безопасности полетов.

Достижение требуемого уровня безопасности в настоящее время осуществляется за счет использования технологии, связанной с резервированием особо важных систем, к которым и относятся системы управления. Такой подход пока является единственным способом обеспечения требуемого уровня безопасности полетов в штатных и в прогнозируемых нештатных ситуациях. В непрогнозируемых нештатных ситуациях, таких как боевые повреждения, частичные разрушения оперения или крыла, повышаются требования к системам управления из-за резкого снижения устойчивости и управляемости. Избыточность аэродинамических управляемых поверхностей, наличие силовых органов управления позволяют сохранить управляемость и устойчивость ЛА за счет управляемой реконфигурации системы управления.

Учитывая, что на реакцию либо экипажей, либо систем автоматического управления отводятся жесткие лимиты по времени, необходимо не только повышать уровень надежности, но и применять новые законы управления. Одним из направлений в реализации процессов реконфигурации является применение адаптивных законов управления. Несмотря на определенные успехи в решении проблемы реконфигурации в последнее десятилетия, данная проблема или область еще не готова к решению прикладных задач, характерных для ЛА.

Один из серьезных факторов, сдерживающих решение этой проблемы, заключается в том, что требуется обеспечивать функционирование в условиях как структурной, так и параметрической неопределенности. Критически важным здесь является задача разработки адаптивной системы управления нелинейными динамическими объектами в условиях существенных, разнородных неопределенностей. Автор в качестве направления решения предложил использовать адаптивные системы управления на основе разработанного им класса полуэмпирических нейросетевых моделей.

Для повышения эффективности процесса адаптации одним из направлений является подход, основанный на введении в состав аппаратно-программной и информационной.из- процессе решения научной задачи исследования автором получены слее нпучные результптьь Алгоритмы формирования полуэмпирических нейросетевых моделей как одного из классов моделей типа «серый ящик» на основе теоретического знания (в виде системы обыкновенных дифференциальных уравнений или дифференциально-алгебраических уравнений) об объекте управления и экспериментальных данных о его поведении.

Предложенные алгоритмы предусматривают структурную перестройку и параметрическую настройку формируемой модели. . Нейросетевой подход к обеспечению адаптивности динамических систем (ДС) за счет как закона управления, так и модели самой ДС, на основе ансамблевой архитектуры используемых нейронных сетей и использования инкрементного обучения этих сетей. Совмещение нейроконтроллера и нейросетевой модели объекта с предварительной идентификацией параметров позволяет представить управление в виде суммы программного управления и управления относительно заданной траектории. .

Унифицированное структурное описание нейросетевых моделей, обеспечивающее единообразное представление всех видов статических и динамических сетей, позволяющее автоматизировать процесс синтеза нейросетевых моделей. . Результаты научно-прикладных исследований, связанных с разработкой имитационной модели функционирования адаптивной системы управления летательными аппаратами. В дуюши 1.

Ооосиоваииость и достоверность полученных в диссертации результатов обусловлена использованием выбранных методов исследования, соответствием их предмету и задачам работы, совпадением некоторых результатов, по- быточности, что в конечном итоге позволит выполнять реконфигурацию с момента восстановления состояния системы управления. Реализация такого подхода требует как обоснования и разработки самой методологии использования программных средств в целях повышения эффективности системы управления, так и разработки самих методов, моделей и программного обеспечения, позволяющих минимизировать потребные вычислительные ресурсы. В диссертационной работе ТЮМЕНЦЕВА Юрия Владимировича нашли должное отражение все эти проблемные задачи, направленные на создание адаптивных систем управления пилотируемых и беспилотных ЛА, позволяющие повысить их эффективность.

Все это делает диссертационную работу не только достаточно актуальной, но и нужной для дальнейц1его развития российской авиации. Объект, предмет и рамки исследования определены автором в целом правильно, цель исследования и научная задача сформулированы достаточно корректно. лученных в диссертации, с результатами известных исследований, большим объемом моделирования.

Прпктическая значимость работы определяется тем, что разработанные методы и средства позволяют повысить не только технологическую эффективность процесса функционирования систем управления движением ЛА в условиях параметрической неопределенности, но и повысить уровень адаптации систем автоматического управления.

Адаптация достигается за счет применения нейросетевых моделей. Предложенные методы и алгоритмы представления динамических процессов пилотирования ЛА в виде их графического отображения позволяют на качественном уровне уменьшить время задержки в обнаружении инструктором ошибок экипажа. Полученные в диссертационном исследовании результаты найдут свое применение при разработке перспективных систем адаптивного управления на основе нейросетевого подхода для летательных аппаратов последующих поколений. Основные научные результаты диссертации достаточно широко опубликованы и апробированы.

Диссертант не ограничился тем минимальным кругом публикаций во внутренних и ближайших к нему изданий, который явился бы достаточным для защиты диссертации, а значительно его расширил за счет участия в международных и всероссийских конференциях, семинарах и научных чтениях. Диссертация обладает достаточным внутренним единством, все ее положения и выводы аргументированы и критически оценены по сравнению с ранее достигнутыми и опубликованными результатами. Автореферат соответствует содержанию и выводам диссертации и позволяет получить достаточно полное о них представление.

Диссертация оформлена в соответствии с требованиями к работам, направляемым в печать, написана грамотно, литературным языком. К замечаниям и недостаткам работы можно отнести следующие. 1. В диссертации недостаточно четко сформулирована проблема, решению которой она посвящена. Вследствие этого достаточно сложно за полученными результатами увидеть единую проблему. Моделирование адаптивных систем управления, что внесено в название темы диссертации, также не отражает ни содержание диссертации, ни решаемую проблему. 2.

Предлагаемые адаптивные алгоритмы управления, сочетающие в себе совокупность различных известных подходов с НС-моделированием, проработаны недостаточно глубоко. Отсутствуют как области параметрической неопределенности их применения, так и сравнительный анализ целесообразности использования какого-то конкретного метода адаптивного управления. 3. Изложенный НС-подход к моделированию движения ЛА с адаптивным управлением представляет собой скрытую форму идентификации и сравнивать одни результаты моделирования с другими, полученными, по так называемым, «плохим» моделям не совсем корректно.

4. Реконфигурация системы управления на основе идентификации предполагает наличие определенного временного интервала, в течение которого достигается сходимость процесса идентификации. Не оговорено время обучения нейросети при различных отказах и повреждениях, ни время развития аварийной ситуации, при которой любое управление не способно ликвидировать возникшую деградацию. Указанные замечания и недостатки несколько снижают общий прикладной уровень диссертации, но не уменьшают ее научную значимость и ценность работы в целом. Вывод: диссертация ТЮМЕНЦЕВА Ю. В. представляет собой завершенную научно-исследовательскую квалификационную работу, содержащую новое решение важной научно-технической задачи, состоящей в разработке методов, моделей и средств повышения эффективности адаптивного управления динамическими системами на основе нейросетевой технологии.

Работа удовлетворяет всем требованиям ВАК РФ, предьявляемым к докторским диссертациям. Автор диссертации, ТЮМЕНЦЕВ Юрий Владимирович, заслуживает присуждения ему ученой степени доктора технических наук по специальности 05.13.01 «Системный анализ, управление и обработка информации (авиационная и ракетно-космическая техника)». Официальный оппонент доктор технических наук, профессор г г~ ~ В.П.

Харьков «3» декабря 2016 г. Подпись официального оппонента доктора технических наук, профессора Харькова Виталия Петровича заверяю Начальник отдела по работе с ~фййым соста ф, йф~' О.Ю.Максимова «.~~ » декабря 2016 г. .

Характеристики

Тип файла
PDF-файл
Размер
3,06 Mb
Высшее учебное заведение

Тип файла PDF

PDF-формат наиболее широко используется для просмотра любого типа файлов на любом устройстве. В него можно сохранить документ, таблицы, презентацию, текст, чертежи, вычисления, графики и всё остальное, что можно показать на экране любого устройства. Именно его лучше всего использовать для печати.

Например, если Вам нужно распечатать чертёж из автокада, Вы сохраните чертёж на флешку, но будет ли автокад в пункте печати? А если будет, то нужная версия с нужными библиотеками? Именно для этого и нужен формат PDF - в нём точно будет показано верно вне зависимости от того, в какой программе создали PDF-файл и есть ли нужная программа для его просмотра.

Список файлов диссертации

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6418
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее