1 (779939)
Текст из файла
Лабораторная работа 1
Численные методы решения нелинейных уравнений
Цели работы:
-
программирование численных методов решения нелинейных уравнений;
- сравнительный анализ методов простой итерации, половинного деления и метода Ньютона.
Планируемое время выполнения работы - 4 часа.
Задание.
1. Найти корень уравнения
x - cos(x) = 0
простой итерацией, половинным делением и методом Ньютона с погрешностью
eps < 0.000001 и для каждого из трех методов определить (и вывести на экран) количество шагов алгоритма.
2. Выполнить п.1 для eps < 0.00000001.
3. Выполнить п.1 для уравнения
x – 10cos(x) = 0
и объяснить результаты.
Разработайте программу так, чтобы пункты 1 и 3 выполнялись бы для каждого из методов по одному алгоритму (для этого коэффициент при cos(x) сделайте переменной).
Указания
Численному решению уравнения
f(x) = 0 (1)
должно предшествовать хотя бы грубое исследование вопросов существования и положения корней.
Итерационные методы
Заданное уравнение f(x) = 0 приводят к виду
x = (x). (2)
Выбирая некоторое начальное приближение Х0, вычисляют последовательные приближения
Хj+1 = (Xj), (j=0, 1, 2, …).
Сходимость таких приближений к искомому решению Х требует отдельного исследования. Сходимость зависит прежде всего от вида функции, а также от начального приближения. (В данной лабораторной работе такие исследования не делаются, но в пункте 3 задания приведена функция, для которой решения методом Ньютона и методом простой итерации могут расходиться.) Для того, чтобы программа нахождения корней этими методами не зацикливалась, следует ограничивать максимальное число итераций Nmax, например, Nmax < 1000.
Возможны различные способы приведения уравнения (1) к виду (2).
Простая итерация
Хj+1 = Xj - f(Xj).
Метод Ньютона (метод касательной)
Хj+1 = Xj - f(Xj)/ f (Xj).
Метод половинного деления
Для использования этого метода нужно задать границы интервала на оси абсцисс, содержащего ровно один корень [xl, xr] и требуемую точность вычислений.
Суть метода заключается в следующем. Выбирают Х на середине интервала [xl, xr] и определяют f(X). Если |f(X)| < eps, то середина интервала считается корнем функции, иначе корень ищется на том интервале из двух полученных, для которого значения функции на концах имеют разные знаки.
Требования к отчету
Отчет по лабораторной работе должен состоять из 4-х разделов, отражающих основные этапы разработки программы:
- Постановка задачи;
-
Разработка алгоритма;
- Кодирование (соответствующий раздел отчета называется «Текст программы»);
- Тестирование (соответствующий раздел отчета называется «Анализ результатов»).
В разделе «Постановка задачи» должен быть приведен текст задания.
Раздел «Разработка алгоритма» должен содержать следующую информацию:
-
краткое описание алгоритма (для 3-х методов);
-
описание входных, выходных и вспомогательных данных с указанием их идентификаторов и типов;
-
схему алгоритма, состоящую из двух частей: общей (укрупненной) схемы и уточненной схемы одного из блоков:
-
Простая итерация (блок 0);
-
Метод Ньютона (блок 1);
-
Половинное деление(блок 2).
Номер блока равен остатку от деления порядкового номера студента в списке группы на 3 (блоки нумеруются, начиная с 0).
В разделе «Текст программы» должен быть приведен листинг программы, включающий необходимые комментарии.
В разделе «Анализ результатов» должны быть приведены распечатки экранов и объяснение результатов для п.3 задания. Для экономии краски изображения экранов должны иметь белый фон, для чего их нужно предварительно обработать в графическом редакторе (Paint).
Отчет должен быть распечатан на принтере на листах бумаги формата А4, скрепленных в левом верхнем углу с помощью степлера, и подписан исполнителем с указанием даты сдачи отчета преподавателю.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.