Тема 1 (774408), страница 3

Файл №774408 Тема 1 (Материалы лекций) 3 страницаТема 1 (774408) страница 32017-06-07СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

В системе связи, представленной на рис. 1.1, пе сдача сообщений ос естввветев в овном нвлравлении от источнила к ло ателю. Такой оевмм свали называется симплексным. ежим, при котором обеспечивается возможность одновременно передачи сообщений в прямом и обратном направлении, называется дуплексным. Возможен и полудуплексный режим, когда обмен сообщений осуществляется поочередно. Система связи называется многоканальной, если она обеспечивает передачу нескольких сообщений по одной общей линии связи. Структурная схема простейшей многоканальной системы связи изображена на рис.

1.4. Здесь первичные сигналы Ь1(г), Ь2(г), ..., Ьл(г), подлежащие передаче, преобразуются посредством модуляторов М1, М2, ..., М„в электрические сигналы и1(г), и2(г), ..., и„(г), а затем смешиваются в аппаратуре уплотнения. Полученный таким образом групповой сигнал и(г) передается по линии связи. Приемник из принятого колебания х(г) = з(г) + п(г) с помощью устройства разделения (фильтров Ф;) выделяет индивидуальные сигналы з,(г), преобразуемые посредством демодуляторов (детекторов) Д в соответствующие первичные сигналы Ьй(г), Ьэ(г); ..., Ь„(г) . Для разделения сигналов на приемном конце, очевидно, необходимо, чтобы они различались между собой по некоторому признаку.

В практике многоканальной связи преимущественно применяют частотный и временнбй способы разделения. Для обмена сообщениями между многими территориально разнесенными пользователями (абонентами) создаются сети связи, обеспечивающие передачу и распределение сообщений по заданным адресам (в заданное время и с установленным качеством). Распределение потоков сообщений по заданным адресам осуществляется на узлах связи с помощью коммутационных устройств.

П~ Рис.1.4. Струкйурнаа схема простейшей многоканальной системы передача 16 способ ас еделения сообщений сети делятс каимут емые тцдямые. В первом случае связь между абонентами осуществляется по постоянно закрепленным каналам по принципу "каждый с каждым". Во втором случае абоненты связываются между собой не непосредственно, а через узлы коммутации. Сеть связи представляет собой совокупность оконечных (абонентских) уппройств, каналов связи (соединительных линиЯ и узлов коммутации. В зависимости от числа абонентов и размеров обслуживаемой территории сети могут иметь различную структуру: линейную, радиальную, кольцевую, радиально-узловую и т.п.

Задача оптимального построения сетей связи является одной из важнейших задач теории и техники связи. Решается эта задача с помощью теории графов и теории массового обслуживания. 1.3. ПОМЕХИ И ИСКАЖЕНИЯ В КАНАЛЕ В реальном канале сигнал при передаче искажается и сообщение воспроизводится с некоторой ошибкой. Причиной таких ошибок являются как искажения, вносимые самим каналом, так и помехи, воздействующие на сигнал.

Частотные и временные характеристики канала определяют так называемые линейные искажения. Кроме того, канал может вносить и нелинейные искажения, обусловленные нелинейностью тех или иных звеньев канала. Если линейные и нелинейные искажения обусловлены известными характеристиками канала, то они, по крайней мере в принципе, могут быть устранены надлежащей коррекцией. Следует отличать искажения от помех, имеющих случайный характер. Помехи заранее не известны и поэтому не могут быть полностью устранены. Помехой называется любое случайное воздействие на сигнал, которое ухудшает верность воспроизведения передаваемых сообщений.

Помехи весьма разнообразны как по своему происхождению, так и по физическим свойствам. В радиоканалах часто встречаются атмосферные помехи, обусловленные электрическими процессами в атмосфере, и прежде всего грозовыми разрядами. Энергия этих помех сосредоточена главным образом в области длинных и средних волн. Сильные помехи создаются также промышленными установками. Это так называемые индустриальные помехи, возникающие из-за резких изменений тока в электрических цепях всевозможных электроустройств.

Сюда относятся помехи от электротранспорта, электрических двигателей, медицинских установок, систем зажигания двигателей и т.п. Распространенным видом помех являются помехи от посторонних радиостанций и каналов. Они обусловлены нарушением регламента распределения рабочих частот, недостаточной стабильностью частот и плохой фильтрацией гармоник сигнала, а также нелинейными процессами в каналах, ведущими к перекрестным искажениям. В проводных каналах связи основным видом помех являются импульсные шумы и прерывания связи. Появление импульсных помех часто связано с автоматической коммутацией и перекрестными наводками. Прерывание связи есть явление, при котором сигнал в линии резко затухает или исчезает.

Практически в любом диапазоне частот имеют место внутренние шумы аппаратуры, обусловленные хаотическим движением носителей заряда в усилительных приборах, резисторах и других элементах аппаратуры. Эти помехи особенно сказываются при радиосвязи в диапазоне ультракоротких волн, где другие помехи невелики. В этом диапазоне имеют значение и космические помехи, связанные с электромагнитными процессами, происходящими на 17 Солнце, звездах и других внеземных объектах. В общем виде влияние помехи п(т) на полезный сигнал и(т) можно выразить оператором х(т) = Х[х(и(т)), п(т)]. (1.5) В частном случае, когда оператор вырождается в сумму х(т) = х(т) + п(т), (1.6) помеха называется аддитивной Если же оператор может быть представлен в виде произведения х(т) = Щи(т), (1.7) то помеху называют мулыпипликалтивной.

Здесь |с(т) — случайный процесс. В реальных каналах обычно имеют место и аддитивные, и мультипликативные помехи, и поэтому х(т) = Щи(т) + п(т). (1.8) Среди аддитивных помех различного происхождения выделяют сосредоточенные по спектру (узкополосные) помехи, сосредоточенные во времени (импульсные) помехи и так называемую флуктуационную помеху, не ограниченную во времени и спектру.

Флуюпуационная помеха (грлуюпуационный шум) представляет собой случайный процесс с нормальным распределением (гауссовский процесс). Такая помеха наиболее изучена и представляет наибольший интерес как в теоретическом, так и в практическом отношении. Этот вид помех практически имеет место во всех реальных каналах. В диапазоне оптических частот существенное значение имеет кванлтовый шум, вызванный дискретной природой сигнала, Мультипликативные помехи обусловлены случайными изменениями парамегнров канала связи. В частности, эти помехи проявляются в изменении уровня сигнала.

Следует заметить, что между сигналом и помехой отсутствует принципиальное различие. Более того, они существуют в единстве, хотя и противоположны по своему действию. Так излучение радиопередатчика является полезным сигналом для приемника, которому предназначено это излучение, и помехой для всех других приемников. Электромагнитное излучение звезд является одной из причин космического шума в диапазоне сверхвысоких частот и поэтому является помехой для систем радиосвязи. С другой стороны, это излучение является полезным сигналом, по которому определяют некоторые физико-химические свойства звезд.

1.4. КОДИРОВАНИЕ И МОДУЛЯЦИЯ Преобразование дискретного сообщения в сигнал обычно осушествляется в виде двух операций — кодирования и модуляции. Кодирование представляет собой преобразование сообщения в последовательность кодовых символов, а модуляция — преобразование этих символов в сигналы, пригодные для передачи по каналу. С помощью кодирования и модуляции источник сообщений согласуется с каналом. Простейшим примером дискретного сообщения является текст.

Любой текст состоит из конечного числа элементов: букв, цифр, знаков препинания. Их совокупность называется алфавитом источника сообщения. Так как число элементов в алфавите конечно, то их можно пронумеровать и тем самым свести передачу сообщения к передаче последовательности чисел. Так, для передачи эаглавных букв русского алфавита (их 32) неооходимо передать числа от 0 ло 31. Для передачи любого числа, эаписанного в десятичной форме, требуется передача 18 десяти цифр — от 0 до 9.

Практически для этого нужны десять сигналов, соответствующих различным цифрам. Систему передачи дискретных сообщений можно существенно упростить, если воспользоваться при кодировании двоичной системой счисления. В десятичной системе основанием счисления является число 10. Поэтому любое целое число К можно представить в виде К= а„10"+...+а 10э+а,10 +а 10 (1.9) где аь аь ..., а„— коэффициенты, принимающие значение от 0 до 9. Так, число 265 можно записать как 2 10' ~6 10'+5 1О'.

Очевидно, в качестве основания счисления можно принять любое целое число т и представить число 1ч' как К = а„оФ'+ ... + азтз + а1т' + азтс, 11.10) где аь аь ..., а„— коэффициенты, принимающие значения от 0 до т — 1. Задаваясь величиной т, можно построить любую систему счисления. При т = 2 получим двоичную систему, в которой числа записываются с помощью двух цифр — 0 н 1. Например, число 13 в двоичной системе записывается 1101, что соответствует выражению 1.2'+1.2 + 0 2'+1 2'. Арифметические действия в двоичной системе весьма просты.

Так, сложение осуществляется по следующим правилам: 0 + 0 = 0; 0 + 1 = 1; 1 + 0 = 1; 1 + 1 = 10. Различают'еще поразрядное сложение беэ переноса в старший разряд, так называемое "сложение по модулю два". Правила этого сложения следующие: 0 9 0 = 0; 0 9 1 = 1; 190=1; 191= О. Если преобразовать последовательность элементов сообщения в последовательность двоичных чисел, то для передачи последних по каналу связи достаточно передавать всего лишь два различных сигнала. Например, символы 0 н 1 могут передаваться колебаниями с различными частотами нли импульсамн тока разной полярности. Благодаря своей простоте двоичная система счисления широко применяется прн кодировании дискретных сообщений.

При кодировании происходит процесс преобразования элементов сообщения в соответствующие им числа (кодовые символы). Каждому элементу сообщения присваивается определенная совокупность кодовых символов, которая называется кодовой комбинацией. Совокупность кодовых комбинаций, отображающих дискретные сообщения, образует код.

Правило кодирования может быть выражено кодовой таблицей, в которой приводятся алфавит кодируемых сообщений и соответствующие им кодовые комбинации. Множество возможных кодовых символов называется кодовым алФавииом, а их количество и— основанием кода. В общем случае при основании кода и правила кодирования К элементов сообщения сводятся к правилам записи К различных чисел в иичной системе счисления. Число разрядов л, образующих кодовую комбинацию, называется разрядносгпыо кода или длиной кодовой комбинации.

Характеристики

Тип файла
DJVU-файл
Размер
356,1 Kb
Тип материала
Высшее учебное заведение

Список файлов лекций

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6543
Авторов
на СтудИзбе
300
Средний доход
с одного платного файла
Обучение Подробнее