86380 (764071), страница 2

Файл №764071 86380 (Алгебраические кривые и диофантовы уравнения) 2 страница86380 (764071) страница 22016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Опробуем этот способ на кривой E, заданной уравнением

(11)

E: y2 = x3 – 25x,

Рис. 7.

отправляясь от точек P = (–5, 0), Q = (0, 0), R = (5, 0) и S = (–4, 6) (рис.7). Сначала, используя прямую SQ получим точку S1 с координатами (61/4, –93/8), затем получим точку S2 = (5/9, –319/27), далее точку S3 = (12473/961, –4013790/29791) и т.д. Из уравнения (11) видно также, что кривая E симметрична относительно оси х: вместе с каждой точкой T(xT , yT) на кривой лежит и симметричная ей относительно оси x точка T'(xT , –yT), и если точка T рациональна, то и T' будет рациональной. Это можно подогнать под описанный выше метод секущих следующим образом: дополним кривую E «несобственной точкой» O в направлении оси y. Прямые, проходящие через O, – это прямые, параллельные оси y, и мы можем получить точку T' как «третью точку пересечения» прямой, проходящей через O и T, с кривой E. Далее, можно использовать предельный случай метода секущих – метод касательных: вместо прямой, проходящей через рациональные точки P и Q, брать касательную t к кривой в рациональной точке P (считая точки P и Q совпавшими). Рассуждениями, аналогичными проведённым ранее, можно показать, что точка пересечения прямой t с кривой E тоже будет рациональной (и опять это было известно уже Диофанту; см. [1], § 6).

В разобранном выше примере создается – и совершенно справедливо – впечатление, что проводимые построения никогда не заканчиваются и позволяют найти бесконечно много рациональных точек на кривой E. Затруднения могли бы возникнуть, лишь если бы мы после конечного числа шагов вернулись к одной из ранее полученных точек, но это представляется весьма маловероятным ввиду всё усложняющихся знаменателей.

Следующее утверждение было высказано в 1901 г. А. Пуанкаре (1854–1912) [14], а доказано только спустя 20 лет (в 1922 г.) Л. Морделлом [9]:

Все рациональные точки кривой третьего порядка можно получить из некоторого конечного их числа с помощью описанного способа построения.

Как и в теореме Зигеля, кривая считается «пополненной» своими несобственными точками, и кроме того, предполагается, что она является кривой общего вида (т.е. не имеет особенностей). Такие кривые называются эллиптическими 3.

Сформулированная выше теорема Морделла была обобщена в двух различных направлениях: вместо рациональных точек стали рассматривать точки с координатами из заданного числового поля, а вместо эллиптических кривых – поверхности произвольной размерности (так называемые абелевы многообразия). Начало этим обобщениям было положено А. Вейлем, и окончательный результат называют сейчас теоремой Морделла–Вейля.

В связи с этими вопросами о рациональных точках за последние 15 лет появился ряд отчасти фантастических гипотез (Б. Бёрч, X. П. Суиннертон-Дайер, Дж. Тэйт, Э. Огг; см. обзорную статью [17]). Справедливость некоторых из них недавно была подтверждена в проложившей новые пути работе Б. Мазура ([8], 1976 г.). Речь идёт о вопросах, связанных с так называемой «тонкой структурой» рациональных точек на эллиптической кривой, и об этом мне хотелось бы немного рассказать в заключение.

Рассмотрим эллиптическую кривую E, заданную в канонической форме Вейерштрасса, т.е. уравнением вида

(12)

E: y2 = x3 + ax2 + bx + c

Рис.8

с целочисленными коэффициентами a, b и c. Качественно возможны два показанных на рис.8 случая, в соответствии с тем, один или три вещественных корня имеет многочлен в правой части (12) (эти корни соответствуют точкам пересечения E с осью x). Будем опять считать кривую E пополненной несобственной точкой O в направлении оси y. Следуя А. Пуанкаре [14], определим на кривой E операцию P*Q: для любых точек P и Q точка P*Q – это третья точка пересечения прямой PQ с кривой E, симметрично отражённая относительно оси х (рис.9).

Рис. 9.

Легко видеть, что введённая операция коммутативна (т.е. P*Q = Q*P), что точка O является для неё нейтральным элементом (т.е. O*P = P*O) и что для каждой точки P существует обратный элемент – симметричная ей относительно оси x точка P' (т.е. P*P' = O = P'*P). Несколько сложнее доказать, что эта операция ассоциативна (т.е. (P*Q)*R = P*(Q*R) для любых точек P, Q, R). На языке современной математики это означает, что точки кривой E образуют коммутативную группу относительно операции *.

Из предыдущих рассуждений следует, что для любых двух рациональных точек P, Q точка P*Q также рациональна, – собственно, это и послужило исходным пунктом нашего метода секущих для построения рациональных точек. Итак, рациональные точки Erat кривой E образуют подгруппу группы E. (Несобственная точка O считается рациональной.)

Искушённый читатель легко заметит, что теорему Морделла можно теперь сформулировать так:

Рациональные точки эллиптической кривой образуют конечно-порождённую коммутативную группу.

Эта формулировка имеет определённые преимущества, так как для таких групп известны структурные теоремы. Например, группу Erat можно представить в виде произведения некоторой конечной группы TE и конечного числа бесконечных циклических групп. Количество бесконечных циклических сомножителей называется рангом эллиптической кривой E, а конечная группа TE – её группой кручения. О ранге известны до сих пор только отдельные факты. Так, А. Нерон ([11], 1953 г.) доказал, что существует кривая, ранг которой не меньше 10, не приведя, правда, явного примера. А. Виман ([20], 1948 г.) построил пример кривой ранга ³4, Д. Пенни и К. Померанс ([13], 1975 г.) дали пример кривой ранга ³7, а Ф. Грюневальд и Р. Циммерт ([6], 1977 г.) – кривой ранга ³8 4; к числу кривых ранга ³8 относится, например, кривая, задаваемая уравнением (12) с коэффициентами a = –32×1487×1873, b = 25×32×5×151×14551×33353, c = 28×34×52×7×1512×193×277×156307. Рассмотренная ранее кривая (11) (рис.7) имеет ранг 1, соответствующая бесконечная циклическая подгруппа порождается точкой S = (–4, 6). Это следует из результатов Р. Вахендорфа ([19], 1974 г.), который исследовал кривые, задаваемые уравнениями вида y2 = x3 – p2x, где p – простое.

Пока неясно, существуют ли эллиптические кривые сколь угодно большого ранга (что считается весьма вероятным). Известно, однако, что ранг оценивается через коэффициенты уравнения (12) (точнее, через число различных простых сомножителей отдельных коэффициентов [18]). Поэтому неудивительно, что в построенных примерах кривых высокого ранга уравнения имеют большие коэффициенты. Согласно одной из упомянутых выше гипотез, ранг эллиптической кривой E равен кратности нуля так называемого L-ряда LE (z) кривой E в точке z = 1 (Бёрч и Суиннертон-Дайер [3]).

Рассмотрим, наконец, группу кручения TE . Она состоит из рациональных точек P конечного порядка (т.е. из тех, для которых n-кратная композиция P*P*...*P равна O при некотором n), называемых (рациональными) точками кручения. Прежде всего на основании самого вида кривой можно заключить, что справедлива следующая общая структурная теорема: группа TE либо сама циклична, либо есть произведение группы Z2 порядка 2 на циклическую группу. Это можно обосновать следующим образом. Кривая E (пополненная) состоит из одной или двух замкнутых линий (см. рис.8), а потому топологически выглядит как одна или две окружности. При этом часть E0, содержащая (несобственную) точку O, образует подгруппу. Можно доказать, что любая конечная подгруппа в E0 циклическая (это делается точно так же, как для группы вращений окружности). Следовательно, если группа кручения TE целиком лежит в E0, то TE – циклическая группа. В противном случае TE есть произведение Z2 на группу T0E точек кручения из E0.

О группе кручения кое-что было известно уже довольно давно. Так, Т. Нагелль ([10], 1935 г.) и, позднее, Л. Лутц ([7], 1937 г.) получили следующий интересный результат, дающий одновременно метод для явного определения точек кручения конкретных кривых:

Если Р – (рациональная) точка кручения эллиптической кривой Е, заданной уравнением

y2 = x3 + ax2 + bx + c

то её координаты xP и уP являются целыми числами, причём уP равно или 0, или какому-нибудь делителю дискриминанта D кривой Е.

(Дискриминантом кривой называется определённый многочлен от коэффициентов уравнения; в данном случае дискриминант равен

D = 4a3c – a2b2 – 18abc + 4b3 + 27c2;

условие D ¹ 0 является необходимым и достаточным условием регулярности кривой E.) Например, для кривой

E: y2 = x3 – 14x2 + 87x

группа кручения TE есть циклическая группа порядка 8, порождённая точкой P = (3,12). Другим примером служит кривая

E: y2 = x3 – 43x2 + 166

с циклической группой кручения порядка 7, порождённой точкой P = (3,8). Весьма занимательно и совсем несложно самостоятельно придумать и исследовать другие примеры.

Уже давно существовало предположение, подтверждавшееся всё новыми численными примерами, что порядок группы кручения ограничен. К 1960 г. было известно, что он не может принимать некоторых значений, например кратных 11, 14, 15, ... (см. [4]).

В 1976 г. Б. Мазур существенно продвинулся вперёд, доказав, что порядок всякой рациональной точки кручения равен 12 или не превосходит 10 (это уже в 1974 г. предполагал Э. Огг [12]). Тем самым была полностью выяснена структура группы TE.

Имеется 15 возможностей: либо TE – циклическая группа, порядок которой равен 12 или не превосходит 10, либо она есть произведение группы Z2 на циклическую группу порядка 2, 4, 6 или 8.

Выдающимся результатом Б. Мазура была завершена одна из глав теории эллиптических кривых, причём весьма неожиданно даже для некоторых специалистов, считавших, что над этой проблемой придётся работать ещё долгое время. Можно смело утверждать, что этот результат принадлежит к числу интереснейших математических результатов последних лет. Разумеется, в рамках настоящей лекции невозможно указать даже хотя бы идею метода доказательства Мазура. Да это и не входит в мою задачу.

Я хотел только попытаться пройти вместе с вами небольшую часть пути развития одной математической проблемы – от Пифагора через Диофанта и гипотезу Ферма к рациональным точкам эллиптических кривых – и показать, как в ходе исследования проблему видоизменяли, обобщали и снова конкретизировали, частично решали и возводили на её основе новые теории. Пусть нематематики простят мне, что время от времени я вынужден был обращаться к математическим понятиям и формулам.

Примечания

1.

Формально-математически это означает отсутствие особенностей у соответствующей комплексной проективной кривой, представляющей собой тем самым поверхность Римана рода g > 1. назад к тексту

2.

Случаи, когда квадрика вырождается в точку (как это будет, например, для кривой, задаваемой уравнением x² + y² = 0), не принимаются во внимание. назад к тексту

3.

Происхождение этого названия имеет долгую историю. Уже в XVII в. при вычислении длин дуг эллипсов и других кривых математики столкнулись с интегралами вида

g

ò

dx

Öf (x)

0

где f (x) – многочлен степени не выше 4. Исследование этих эллиптических интегралов начал Эйлер. Абель и независимо от него Якоби рассмотрели обратные функции для этих интегралов. Следуя Якоби, их стали называть эллиптическими функциями. Выяснилось, что это двоякопериодические мероморфные функции, удовлетворяющие дифференциальному уравнению вида

X ´ ² – f (X) = 0.

Характеристики

Тип файла
Документ
Размер
1,6 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов статьи

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6392
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее