122829 (756739), страница 3
Текст из файла (страница 3)
В се более широкое применение для повышения свойств отливок из жаропрочных сплавов находит горячее изостатическое прессование (ГИП). Показано, что ГИП при 1200°С в течете 4 ч приводит к повышению пластичности литейных сплавов в 1.5-2 раза при сохранении на высоком уровне прочностных характеристик. Этот эффект объясняется практическим устранением литейной микропористости, повышением плотности и дисперсности дендритной структуры, уменьшением микрохимической неоднородности и количества пластинчатых карбидов.
Р ис.11. Длительная прочность сплава ХН60КВЮМБ.
Рис.12. Влияние отношения Ti/Al на жаропрочность и сопротивление высокотемпературной газовой коррозии никелевого сплава.
Р
ис.13; Влияние гафния на свойства литейного никелевого сплава 1 - 900° С.245 Н/мм2; 2 - 900°С, 294 Н/мм2
Рис.14 Длительная прочность сплава ХН65ВБМЮ.
Р ис.15. Влияние микролегирования на жаропрочность никелевых сплавов.
Известно, что микролегирование жаропрочных сплавов на никелевой основе является эффективным средством повышения их эксплуатационных и технологических характеристик. На рис.15 показан этот эффект для ряда среднелегированных никелевых сплавов. Положительное влияние малых добавок неодима, гафния и церия реализовано при разработке сплава ХН61МВТБЮ, наиболее высокожаропрочного из свариваемых отечественных материалов. Этот сплав, упрочненный фазой Ni3(Ti, Al, Nb), обладает хорошей технологичностью и высоким комплексом свойств (рис.16), по которому он значительно превосходит широко применяющийся сплав ХН67МВТЮ. Время до разрушения сплава ХН61МВТЮБ при 800°С и напряжении 450 11/мм" составляет не менее 20 ч; он практически не охрупчивается при высокотемпературных нагревах, имитирующих режимы пайки.
С целью повышения свойств свариваемых сплавов типа ХН67МВТЮ изучено влияние легирования танталом и рением на кратковременные и длительные свойства материала. Установлено, что введение тантала резко повышает предел прочности при комнатной температуре, но с повышением температуры эффект снижается (рис.17); пластичность при этом уменьшается, остается на достаточно высоком уровне. При 700°С время до разрушения сплава монотонно возрастает при увеличении концентрации тантала, а при 800°С зависимость носит экстремальный характер - снижение жаропрочности при концентрации тантала более 3 мае. % связано с образованием пластичной ц-фазы. Рений влияет на свойства сплава аналогично танталу, но без снижения длительной прочности в изученном интервале концентраций 0,5-2,5 мае. %. Механизмы воздействия этих элементов отличаются: рений легирует твёрдый раствор, а тантал изменяет состав и морфологию карбидных фаз, легирует твердый раствор, но главным образом (-50-60%), входит в состав у-фазы" повышая ее термическую стабильность.
П ерспективными направлениями в повышении эксплуатационных характеристик изделий из никелевых жаропрочных сплавов являются лазерная обработка ионная имплантация, способы селективного окисления поверхности одновременным внутренним окислением и ряд других.
Р ис.16. Механические свойства свариваемого сплава ХНбШВТБЮ.
Рис.17. Влияние тантала на механические свойства и жаропрочность сплава типа ХН67МВТЮ.
ЖАРОПРОЧНЫЕ ЦВЕТНЫЕ СПЛАВЫ, ИХ СВОЙСТВА И НАЗНАЧЕНИЕ
Рабочие температуры различных групп жаропрочных сплавов определяют их температурами солидуса, а последние - температурами плавления основ, т.е. растворителей.
Магний (650° С), алюминий (660° С), титан (1670°С), медь (1084°С), железо (1539° С), никель (1455° С), кобальт (1492° С), ванадий (1900°С) хром (1875°С), ниобий (2468°С), молибден (2625° С), тантал (3000° С), вольфрам (3380° С).
Как видно, из этой последовательности "выпадают" только титановые жаропрочные сплавы и жаропрочные стали, что объясняется полиморфизмом и другими свойствами их растворителей.
МАГНИЕВЫЕ СПЛАВЫ
Основой жаропрочных магниевых сплавов является очень легкий металл магний, имеющий г. п. у. решетку, плотность =1,74 г/см, модуль нормальной упругости
Е=45700 Мн/м² (4570 кГ/мм) и температуру плавления г 650°С.
Магниевые сплавы - самые легкоплавкие по сравнению с жаропрочными сплавами других групп, поэтому их рабочие температуры сравнительно невысоки (не превышают 300-350° С). Этим определяются также небольшие значения характеристик длительной прочности и - ползучести магниевых сплавов 'при повышенных температурах.
Несмотря на это, жаропрочные магниевые сплавы, благодаря их легкости, высокой вибрационной прочности, жесткости и достаточной удельной жаропрочности могут применяться ц конструкциях ответственных летательных аппаратов (авиационная и ракетная техника и др.) - По удельной прочности и жаропрочности наилучшие магниевые сплавы превосходят жаропрочные алюминиевые сплавы. Немаловажное значение имеют большие запасы магния в земной коре [2,1% (по массе), и его сравнительно невысокая стоимость.
Правда, жаропрочные магниевые сплавы заметно уступают алюминиевым по технологичности (при плавке,. литье, обработке давлением и термической обработке),. коррозионной стойкости и прочностным свойствам при г комнатной температуре [аи==320 - 330 Мн/м2 (32 - 33 кГ/мм2)]. Коррозионную стойкость магниевых сплавов повышают методами химической и лакокрасочной защиты.
АЛЮМИНИЕВЫЕ СПЛАВЫ
Алюминий в отличие от магния имеет г. ц. к. решетку и более высокий модуль нормальной упругости Е=73800 Мн/м² (7380 кГ/мм²), поэтому алюминиевые сплавы при нормальной температуре более прочны и пластичны, чем магниевые. При повышенных же температурах (например, 300° С) алюминиевые сплавы по удельной жаропрочности несколько уступают магниевым сплавам, так как удельный вес алюминия примерно в 1,5 раза больше, чем у магния (2,7 против 1,74 г/см ).
Температура плавления алюминия на 10 град выше, чем у магния (660 вместо 650° С). Длительная твердость при 300° С у алюминия также несколько выше чем у магния: 40 вместо 30 Мн/м (4 вместо 3 кГ/мм), что, по-видимому, и определяет более высокий уровень рабочих температур алюминиевых сплавов (350-400° С) по сравнению с рабочими температурами магниевых сплавов (300-350° С).
По распространенности в природе алюминий занимает второе место (после кремния). Содержание алюминия в земной коре составляет около 8,8% (по массе), что свидетельствует о больших запасах алюминиевого сырья. По стоимости алюминий примерно на 40% дешевле меди.
Характерная особенность алюминиевых сплавов по сравнению с магниевыми-высокая технологичность. В отличие от магниевых сплавов алюминиевые сплавы не нуждаются в специальной защите при плавке, литье, термической обработке и других технологических операциях. Плотная окисная пленка из AI2O3, образующаяся на алюминиевых сплавах, хорошо защищает их от окисления при комнатнойи повышенных температурах.
Из-за высокой тепло - и электропроводности чистого алюминий составляющих примерно 65% от этих свойств меди, некоторые жаропрочные малолегированные алюминиевые сплавы в настоящее время применяют вместо меди как проводниковые материалы.
ТИТАНОВЫЕ СПЛАВЫ
Современные жаропрочные титановые сплавы, так же как магниевые и алюминиевые сплавы, относятся к легким конструкционным материалам (плотность титана 4,5 г/см). Благодаря высокой удельной прочности и жаропрочности, коррозионной стойкости в различных средах и хорошей свариваемости их применяют в авиационной, ракетной и других областях техники (обшивка сверхзвуковых самолетов, детали реактивных двигателей и др.).
Рабочие температуры жаропрочных титановых сплавов пока составляют 450-500° С. По пределу длительной прочности при 300-350°С они превосходят лучшие жаропрочные алюминиевые сплавы в 8-10 раз, а при более высоких температурах алюминиевые и тем более магниевые сплавы вообще неприменимы.
Кратковременно современные жаропрочные титановые сплавы могут работать при температурах 600 - 650°С и выше. Длительное же использование (сотни часов и более) их в окислительных средах при температурах выше 500°С невозможно из-за сильного окисления; покрытий, обеспечивающих надежную защиту титановых сплавов от окисления, пока нет.
В последние годы некоторые жаропрочные титановые сплавы стали применять не только в деформированном, но и литом состоянии (сплавы типа ВТ5 и др.). Многие деформируемые титановые сплавы благодаря узкому интервалу кристаллизации обладают хорошими литейными свойствами и сохраняют достаточную пластичность в литом состоянии при комнатной температуре δ >=5 - 7% и ψ>=10-15%).
МЕДНЫЕ СПЛАВЫ
Медь является одним из важнейших дефицитных цветных металлов, удачно сочетающим в себе высокую электро - и теплопроводность с достаточной прочностью.
До недавнего времени механические свойства меди и ее сплавов изучали лишь при комнатной температуре.
Систематических данных о влиянии легирующих элементов на физико-механические свойства меди при повышенных и тем более высоких температурах до пятидесятых годов практически не было.
Между тем, с развитием новых областей техники возникла острая потребность в медных сплавах, которые наряду с высокой прочностью и жаропрочностью одновременно обладали бы высокой тепло - и электропроводностью. Если та или иная деталь хорошо отводит тепло и проводит ток, то она меньше нагревается и при наличии необходимой жаропрочности длительнее сопротивляется пластическим деформациям при повышенных температурах. Именно такие медные сплавы в настоящее время представляют наибольший практический интерес.
Благодаря высокому теплоотводу (при интенсивном охлаждении) теплопроводные жаропрочные медные сплавы могут работать в таких условиях, которых не выдерживают жаропрочные сплавы на основе железа и другие малотеплопроводные сплавы.
Таким образом, стойкость и работоспособность медных сплавов при повышенных температурах в основном зависит от оптимального сочетания жаропрочности и тепло - или электропроводности.
НИКЕЛЕВЫЕ И КОБАЛЬТОВЫЕ СПЛАВЫ
В настоящее время жаропрочные никелевые сплавы по своему значению вышли на одно из первых мест и находят широкое применение в различных областях техники (авиационное двигателестроение, стационарные газовые турбины, химическое аппаратостроение и др.), Объясняется это тем, что жаропрочные никелевые сплавы удачно сочетают высокую жаропрочность, окалиностойкость и технологичность.
Только за последние 15--20 лет рабочие температуры жаропрочных никелевых сплавов возросли примерно с 750 до 1000-1030°С. Это оказалось возможным за счет:
-
использования для приготовления жаропрочных сплавов более чистых шихтовых материалов, свободных от вредных легкоплавких примесей (свинец, висмут, олово, сурьма, сера и др.);
-
легирования жаропрочных сплавов значительными количествами вольфрама, кобальта, молибдена и ниобия (вводимых раздельно или совместно), которые существенно затормаживают диффузионные процессы разупрочнения в сплавах и повышают их жаропрочность;
-
увеличения до оптимального уровня содержания легирующих элементов, вызывающих упрочнение жаропрочных никелевых сплавов при термической обработке (в первую очередь алюминия и титана);
-
введения в сплавы небольших добавок бора, циркония и других аналогичных легирующих элементов, способствующих упрочнению границ зерен и приграничных областей за счет образования боридов и др.;
-
наконец, усовершенствования технологии производства и обработки жаропрочных никелевых сплавов (плавка в вакууме или среде инертного газа, различные варианты упрочняющей термической или термомехапической обработки и др.).
ЖАРОПРОЧНЫЕ СПЛАВЫ ТУГОПЛАВКИХ МЕТАЛЛОВ. ИХ СТРУКТУРА, СВОЙСТВА И ПРИМЕНЕНИЕ
Для современной высокотемпературной техники требуются конструкционные материалы, способные работать в течение длительного времени при температурах выше 1000-1030°С, т.е. более высоких, чем рабочие температуры жаропрочных никелевых и кобальтовых сплавов. Удовлетворить эти требования, как показывает практика, могут только жаропрочные сплавы на основе тугоплавких металлов. .