AUTO (743530), страница 3

Файл №743530 AUTO (Типы регулярных регуляторов) 3 страницаAUTO (743530) страница 32016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

W (p) = k Т p / (T p + 1) (25)

Таким образом, в динамическом отношении RC-цепь (рис.13) является реальным дифференцирующим звеном.

Постоянная времени и коэффициент передачи звена k = R2 / (R1 + R2); T = C (R1 + R2) .

Изображение выходной величины при скачкообразном изменении входной величины до х0ВХ

Типы регулярных регуляторов (PID) ПИД.

УУ

ОР

С игнал


ОС


Сумматор Упр. Устройство Обр. Связь Орг. Регистр.


Тепловые регуляторы.
Регулятор с пропорциональным законом регулирования называется пропорциональным регулятором или П-регулятором.

В динамическом отношении П-регуляторы являются усилительным звеном.

Переходные процессы в П-регуляторах описываются выражением y = k x; где x – входное воздействие на регулятор равное воздействию регулирующей величины от заданного значения, y – воздействие регулятора на регулирующий орган, направленное на ликвидацию отклонения регулирующей величины от заданного значения.

При настройке П-регулятора следует иметь в виду, что чрезмерное увеличение запаса устойчивости улучшает качество регулирования, так как при этом затягивается переходной в системе. С учётом этого для системы с П-регулятором имеется определённое значение коэффициента его передачи k, который и следует выбрать при настройке системы.

Интегральные регуляторы.

Регуляторы с законом регулирования называются интегральными или И-регуляторами.

Хотя путём выбора оптимального значения коэффициенты передачи и можно существенно уменьшить, установив ошибку регулирования, её полная, ликвидация в системе с П-регулятором даже теоретически невозможна. Основное назначение законов И-регуляторов – ликвидация установившихся ошибок регулирования. Как самостоятельные регуляторы И-регуляторы применяются редко из-за медленного возрастания регулирующего воздействия на объект при отклонении регулируемой величины.

Дифференциальные регуляторы.

П-регуляторы оказывают на объект существенное регулирующее воздействие, когда регулируемая величина уже имеет значительное отклонение от заданного значения.

И-регуляторы оказывают регулирующее воздействие постоянно наращивая его по интегралу. П- и И-регуляторы не могут упредить ожидаемое отклонение регулируемой величины, а реагируют только на уже имеющиеся в данный момент нарушения технологического процесса. Для упреждения нарушений используют Д-регуляторы, работающие по закону y = k dx / dt.

Пропорциональные регуляторы.

Приближение точки пересечения КЧХ разомкнутой системы отрицательной полуоси к точке В (-1, j 0) определяет запас устойчивости по модулю с замкнутой автоматической системы регулирования. При приближении КЧХ к точке В увеличивается колебательность в замкнутой системе; при пересечении этой точки (запас устойчивости с = 0) в замкнутой системе возникают незатухающие колебания, а при охвате КЧХ точки В (-1, j 0) замкнутая система неустойчива. Так как модуль КЧХ системы определяется коэффициентом передачи (усиления) разомкнутой системы на данной частоте, то степень приближения КЧХ разомкнутой системы можно регулировать путём изменения её коэффициента передачи k.

Комплексная частотная характеристика разомкнутой системы

W (j w) = WP (j w) WОБ (j w) (26)

Из этого выражения следует, что коэффициент передачи разомкнутой системы можно изменять с помощью автоматического регулятора, если его комплексная частотная характеристика имеет вид

WC (j w) = kP, (27)

Где kP - коэффициент передачи регулятора, являющийся его параметром настройки. При этом КЧХ разомкнутой системы имеет вид

W (j w) = kP WОБ (j w). (28)

Из этого выражения следует, что при подключении кобъекту такого регулятра КЧХ объекта увеличивается на каждой частоте пропорционально в kp раз. Поэтому регулятора с таким пропорциональным законом регулирования называют пропорциональными регуляторами или П-регуляторами.

В динамическом отношении П-регуляторы являются усилительным звеном. Передаточная функция П-регулятора

WП (р) = kP. (29)

Рисунок 14. Характер изменения КЧХ разомкнутой системы с П-регулятором.

На рис.14 представлены КЧХ разомкнутой системы с П-регулятором. При kP = 1 КЧХ разомкнутой системы совпадает с КЧХ объекта регулирования. При kP > 1 КЧХ разомкнутой системы приближается к точке В(-1, j 0); при kP < 1 отходит от этой точки. В качестве примера на рис.14 изображены две КЧХ разомкнутой системы при kP = kP1 = 1,5 и kP = kP2 = 0,5.

В соответствии с W (j w) = kP WОБ (j w) на рис.14, например, вектор КЧХ разомкнутой системы равен ОЕ2 = kP1 * ОА2 = 1,5 ОА2, где ОА2 - вектор КЧХ объекта.

Закон регулирования П-регулятора является статическим. Переходные процессы П-регулятора описываются отношением

Y = kP x (30)

где x - входное воздействие на регулятор, равное отклонению Е регулируемой величины от заданного значения; y-воздействие регулятора

на регулирующий орган, направленное на ликвидацию отклонения регулируемой величины от заданного значения.

При настройке П-регулятора следует иметь в виду, что чрезмерное увеличение запаса устойчивости с ухудшает качество регулирования, т.к. при этом затягивается переходной процесс в системе (увеличивается время регулирования), увеличиваются динамическая ошибка регулирования, установившаяся ошибка регулирования как по каналу задающего, так и по каналу возмущающего воздействий.

С учётом этого для системы с П-регулятором имеется определённое оптимальное значение коэффициента его передачи kp, которое и следует выбирать при настройке системы.

Интегральные регуляторы.

При статистическом объекте и статистическом регуляторе АСР является статистической как по каналу задающего, так и по каналу возмущающего воздействий.

При астатическом объекте система астатическая по каналу задающего воздействия и статическая – по каналу возмущающего воздействия.

Таким образом, АСР П-регулятором всегда имеет установившуюся ошибку регулирования по канал возмущающего воздействия, а при статическом объекте – и по каналу задающего воздействия, Хотя путём выбора оптимального значения коэффициента передачи П-регулятора и можно существенно уменьшить установившуюся ошибку регулирования,её полная ликвидация в системе с П–регулятором даже теоретически невозможна.

Если по условия технологии требуется точное поддержание заданного значения регулируемой величины, то в знаменателе передаточной функции W (р) = WP (р) WОБ (р) разомкнутой системы в качестве сомножителя должен быть оператор р. С учётом этого передаточная функция разомкнутой системы должна иметь вид W(р) = WP (р) Wоб (р) = WОБ (р) / р, т.е. необходимо применение в системе астатического регулятора с законом регулирования, определяемого передаточной функцией W (р) = 1 / р,или в более общем случае

W (р) = kP / р (31)

Сравнивая W (р) = kP / р и W (р) = k / р, видим ,что регулятор с передаточной функцией W (р) = kP / р в динамическом отношении является интегрирующим звеном. Выходная величина такого регулятора пропорциональна интегралу от входной величины, т.е.

(32)

Поэтому регуляторы с таким законом регулирования называются интегральными или сокращённ И-регуляторами.

Коэффициент передачи kp определяет степень ввода в закон регулирования интеграла и является параметром настройки И-регулятора. В соответствии с L (w) = 20 lg k – 20 lg w КЧХ И-регулятораимеет вид

WИ (i w) = kP e - j / 2 / w. (33)

КЧХ разомкнутой системы с И-регулятором определяется выражением

W (i w) = kP e - j / 2 WОБ (i w) / w. (34)

Из этого выражения следует, что в системе с И-регулятором вектор КЧХ объекта на данной частоте увеличивается в kp/w раз и поворачивается по часовой стрелке на 90.

Рисунок 15. Кмплексные частотные характеристики объекта Wоб (j w) и разомкнутой АСП W (j w) с И-регулятором.

На рис.15 выполнено построение КЧХ разомкнутой системы с И-регулятором и известной КЧХ объекта регулирования. Каждый вектор КЧХ разомкнутой системы связан с КЧХ объекта выражением … Например,

Так как при w 0 отношение kP / w  , то КЧХ разомкнутой системы с И-регулятором при w 0 уходит в бесконечность, асимптотически приближаясь в квандранте III к отрицательному направлению мнимой полуоси. Основное назначение закона И-регулирования – ликвидация установившейся ошибки регулирования.

Как самостоятельные регуляторы И-регулиры применяются редко из-за медленного нарастания регулирующего воздействия на объект при отклонении регулируемой величины. В связи с этим И-регулиры в основном применяются для регулирования в комплекте с регуляторами, формирующими другие законы регулирования, например с П-регуляторами.

Обычно закон И-регулирования формируется не самостоятельным регулятором, а блоком или устройством, конструктивно являющимся составной частью регулятора, реализующего более сложный, например пропорционально-интегральный, закон регулирования.

Аналогично W (p) = 1 / T p передаточная функция И-регулятора имеет вид

WИ (p) = 1 / (TИ p), (35)

где TИ - постоянная времени интегрирования – параметр настройки регулятора.

Рассмотрим физический смысл постоянной времени интегрирования.

Закон И-регулирования И-регулирования с учётом (35) выражается формулой

y = (1 / TИ) x dt (36)

Предположим, что на вход регулятора поступил постоянный сигнал х = х0ВХ. При этом выходной сигнал изменяется по закону y = (1 / TИ) x0ВХ dt = х0ВХ t / TИ. По истечении времени t=Tи значение выходного сигнала равно у = х0ВХ.

Таким образом, постоянная времени интегрирования И-регулятора равна , в течении которого с момента поступления на вход регулятора постоянного сигнала сигнал на выходе регулятора достигает значения. Равного значению входного сигнала.

Дифференциальные регулирующие устройства.

Пропорциональные регуляторы оказывают на объект существенное регулирующее воздействие, когда регулируемая величина уже имеет значительное отклонение от заданного значения. Интегральные регуляторы оказывают регулирующее воздействие, постоянно наращивая его по интегралу.

Таким образом, П- и И-регуляторы не могут упреждать ожидаемые отклонения регулируемой величины, регулируя только на уже имеющиеся в данный момент нарушения технологического процесса. В то же время, если регулируемая величина в какой-то момент времени начинает быстро отклонятся от заданного значения, то это значит, что на объект поступили значительные возмущения и что отклонения регулируемой величины в результате этого воздействия будут значительными.

В этом случае желательно иметь регулятор, который вырабатывал бы регулирующее воздействие пропорционально скорости отклонения регулируемой величины от заданного значения

У = ТД dx / dt (37)

Такой регулятор при большой скорости отклонения регулируемой величины, когда в начальный момент П-регулятор оказывает слабое регулирующее на объект, а И-регулятор только начинает наращивать регулирующее воздействие, оказывал бы существенное регулирующее воздействие на объект, ликвидируя тем самым ожидаемое отклонение регулируемой величины, причём чем дольше возмущающее воздействие на объект, тем быстрее отклоняется регулируемая величина от задания и тем значительнее регулирующее воздействие регулятора на объект, направленное на нейтрализацию возмущающего воздействия.

С учетом изложенного для автоматического регулирования а практику введены дифференциальные регулирующие устройства, формирующие закон регулирования, пропорциональный скорости отклонения регулируемой величины у=Тдdx/dt. Такие регулирующие устройства с законом регулирования у=Тдdx/dt дифференцируют поступающий на его вход сигнал (отклонение регулируемой величины) и называются дифференциальными или Д-регуляторами.

Передаточная функция Д-регулятора

Характеристики

Тип файла
Документ
Размер
255,5 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее