ecologys (741185), страница 2
Текст из файла (страница 2)
Сбросы в гидросферу и педосферу в сульфат-целлюлозном производстве.
Основными источниками загрязнения гидросферы и педосферы в сульфат- целлюлозном производстве являются отбельный, варочный и кислотный цеха.
Варочный и кислотный цеха. В сток попадают органические соединения, образующиеся при варке, и остаточные химикаты. Так при выпуске 3 млн. т. в год целлюлозы образуется 3.5 млн. т. в год отработанных щёлоков в пересчёте на сухое вещество или около 7 млн. т. в год в пересчёте на 50 % концентрат. Из них около 2 млн. т. в год можно утилизировать в виде спирта, кормовых дрожжей и технических лигносульфонатов. Остальные 70 – 75 % сухих веществ отработанных щёлоков сбрасывается в очистные сооружения или непосредственно в водоёмы.
Отбельный цех. В процессе отбеливания целлюлозы традиционно используют либо сам хлор, либо его производные (оксид хлора, хлораты и гипохлориты), а при делигнификации древесины содержащей фенольные фрагменты лигнин (содержание которого в древесине лиственных пород 20 – 30 %, в хвойных породах – до 50 %) взаимодействует с хлорными реагентами, образуя диоксины и фураны (или их предшественников), которые являются высокотоксичными экотоксикантами.
Сбросы в реки и почву с ЦБК увеличивают содержание взвешенных веществ, сульфатов, хлоридов, нефтепродуктов, органических соединений, ряда металлов, веществ метоксильных, карбоксильных и фенольных групп. По этим параметрам ПДК превышены в несколько раз.
Самыми опасными и заслуживающими дальнейшего рассмотрения токсинами, безусловно, являются диоксины и фураны.
Диоксины – группа высокотоксичных экотоксикантов – полихлорированных дибензодиоксинов (ПХДД, I) и дибензофуранов (ПХДФ, II).
O
Cln Cln
O
ПХДД (I)
Cln Cln
O
ПХДФ (II)
Здесь n = 2…4. Причём фуранами мы называем дибензофураны, хотя это не совсем корректно. Диоксины и фураны могут иметь в своём составе чётное (обычно 4, 6 и 8) или нечётное (как правило, 5 или 7) число атомов хлора. Для обозначения положения атомов хлора в бензольных кольцах диоксинов и фуранов используют цифры в соответствии с правилами «Женевской номенклатуры органических соединений». Нас интересуют следующие изомеры хлорзамещённых соединений:
ТХДД (III) – тетрахлор дибензодиоксин, ПХДФ (IV) – пентахлор дибензофуран, ГкХДД (V) – гексахлор дибензодиоксин, ГпХДФ (VI) – гептахлор дибензофуран и ОХДФ (VII) – октахлор дибензофуран.
Необходимо заметить, что предельно допустимая концентрация (ПДК) диоксинов и фуранов для взрослого человека составляет 320 триллионных частей грамма в день и что такая ежедневная доза приводит к риску возникновения рака и других онкологических заболеваний. Если сопоставить два вида смертельных доз диоксинов и фуранов: минимальную летальную дозу MLD (характеризующую общую токсичность) и половину полной летальной дозы LD50 (при которой погибнет 50 % исследуемых живых организмов). Оказалось, что по общей токсичности (MLD, моль/кг) диоксины и фураны (3.1*10-9) превосходят самые сильные химические яды: кураре (7.2*10-7), стрихнин (1.5*10-6), цианистый натрий (3.1*10-4) и боевое отравляющее вещество диизопропилфторфосфат (1.6*10-5). Что касается значений LD50 (мг/кг), то они для диоксинов и фуранов изменяются следующим образом: 0.5 (куры), 0.3 (собаки), 0.1 (кошки и мыши), 0.05 (крысы) и 0.001 (морские свинки).
Допустимая суточная доза диоксинов и фуранов.
В США эта доза равна 0.006 пкг на килограмм веса человека, тогда как в России она существенно выше – 10 пкг/кг. Норма загрязнения питьевой воды в нашей стране – 20 пкг/л, а ПДК для атмосферы – 0.5 пкг/м3. Поэтому человек весом в 60 кг при условии, что он потребляет три литра воды в день, может получить с водой лишь 10 % диоксинов и фуранов от суточной нормы. В тоже время расчёты показывают, что при потреблении даже нежирной рыбы (с количеством жира до 5 %), в которой количество диоксинов и фуранов может быть около 50 пкг/г жира, 500 граммов рыбы даст уже 1250 пкг токсикантов, что в 2 раза превышает допустимую суточную дозу, а если речь идёт о рыбе с количеством жира 50 %, которая легко биоаккумулирует хлорорганические экотоксиканты, в этом случае имеют место существенно более высокие уровни накопления диоксинов и фуранов, а, следовательно, более серьёзные экотоксилогические эффекты.
Кроме химического загрязнения водоёмов происходит тепловое загрязнение воды. Это происходит вследствие использования больших объёмов воды в течение технологического процесса, а также использования воды в теплообменниках и конденсаторах для охлаждения, после чего нагретая вода попадает со стоком предприятия в гидросферу.
Сбросы в водоёмы и почву в сульфат-целлюлозном производстве.
Таблица 5.
Ингредиент | Источник сбросов |
Взвешенные вещества. | Сульфат-целлюлозное производство (нерастворимые частицы). |
Сульфаты (К2SO4, KHSO4, диорганилсульфаты и органилсульфаты). | Сульфат-целлюлозное производство. |
Хлориды (KCl, NaCl) и хлораты (KClO3, NaClO3). | Отбельный цех. |
Нефтепродукты. | ИРП (мазут). |
Фенолы. | Лигнин (Сульфат-целлюлозное производство). |
Органические соединения (жирные кислоты, сульфатное мыло, ароматические соединения, клейкие вещества и др.). | Производство побочных продуктов, варочно-промывной цех, РП. |
Диоксины и фураны. | (фенолы + хлорные реагенты). Сульфат-целлюлозное производство, отбельный цех. |
Металлы (Mg, Zn). | Сульфат-целлюлозное производство. |
Тёплая вода. | Газоконтактный испаритель, варочно-промывной цех, выпарной цех, РП СРК, ИРП. |
Природосберегающие технологии.
Мы разобрались с тем, какие вредные и опасные вещества попадают в атмосферу, гидросферу и педосферу в процессе работы целлюлозно-бумажного комбината. Теперь необходимо разобраться, что необходимо сделать, чтобы уменьшить влияние на окружающую среду вредного производства. Для этого существуют два пути. Первый – совершенствование очистительных установок по очистке выбросов и сбросов от токсикантов. Второй – совершенствование технологического процесса производства, разработка экологически чистых методов производства, методов по уменьшению отходности предприятия и безопасных промышленных установок.
Кроме этого, необходимо затронуть вопросы переработки макулатуры, отходов бумажных фабрик (их уменьшения и переработки) и деревообрабатывающих предприятий, а также токсичности выпускаемой продукции.
Очистка выбросов в атмосферу на ЦБК.
Очистка газов от паров летучих органических соединений (ЛОС).
Общая методология.
Адсорбционные методы: это, прежде всего классические рекуперационные методы очистки, основанные на улавливании паров ЛОС активным углем, с последующей десорбцией уловленных веществ водяным паром при повышенных температурах (105 – 120 0С). После совместной конденсации паров воды и десорбированных ЛОС, полученный конденсат органических соединений отделяют в сепараторе от водной фазы. Если десорбируемые органические соединения растворимы в воде, то для выделения органических соединений конденсат подвергают дистилляции.
Если в очищаемом газе концентрация ЛОС мала (<1 г/м3), то нецелесообразно проводить регенерацию адсорбента водяным паром, а необходимо провести десорбцию горячим (200 – 250 0С) инертным газом (обычно дымовыми газами).
Десорбированные пары ЛОС не утилизируют, а сжигают каталитическим либо термическим методом.
Адсорбционной разновидностью очистки газов является адсорбционно-каталитический процесс. В этом случае в качестве адсорбента используются оксидные катализаторы, которые в процессе очистки накапливают пары ЛОС, а при регенерации, за счёт нагрева катализатора, происходит каталитическое окисление уловленных ЛОС, на этом же бифункциональном адсорбенте-катализаторе.
Окислительные методы: эта группа методов основана на полной окислительной деструкции молекул ЛОС до СО2 и Н2О.
-
Термические методы – методы сжигания органических загрязнителей воздуха. Обычно используется, когда источник выделения загрязнённого воздуха располагается вблизи какого-либо топочного устройства. В этом случае загрязнённый воздух используется как дутьевой.
-
Каталитические методы – методы дожигания конкретных органических соединений на известных катализаторах, в том числе блочных.
-
Гомогенные низкотемпературные окислительные процессы.
-
Введение озона в очищаемый газ. При концентрации озона 10 –20 мг/м3 очищаемого газа, эффективность очистки 90 –95 % по фенолу и формальдегидам.
-
Очистка с помощью высокочастотного стримерного разряда. В зоне действия разрядов происходит эффективная очистка от паров органических соединений, таких как бензол, толуол, фенол, стирол. При этом фенол конвертируется в аэрозоль гидрохинона, а стирол в аэрозоль полистирола. Диоксины и фураны переходят в конденсированные соединения.
-
Жидкофазное окисление.
-
Процессы, основанные на абсорбции и последующем окислении паров ЛОС, обычно используют для очистки отходящих газов с малой концентрацией веществ с резким неприятным запахом.
-
Очистка водным раствором гипохлорита натрия. Так сернистые соединения улавливаются на 99 %, карболовые кислоты на 98 %, альдегиды и кетоны на 90 %, а фенолы и спирты на 85 %.
-
Биохимические методы – методы, основанные на способности некоторых организмов поглощать и окислять ЛОС.
Особенности очистки воздуха на ЦБК.
Из приведённого ранее, очевидна необходимость разработки несложного, доступного и эффективного способа и аппарата для очистки выбросов в атмосферу от пыли и серосодержащих соединений, ликвидации избыточной влаги парогазового потока и теплового загрязнения. Отличительными особенностями выбросов сульфатно-целлюлозного производства являются многочисленность источников и многокомпонентность выбрасываемых газовых смесей. Кроме того, выбросы от различных источников отличаются по объёму, качественному составу и концентрациям вредных веществ. Подход к очистке выбросов в атмосферу различен в зависимости от качественных характеристик выбросов, подразделяемых на две группы, парогазовые и газопылевые. Такое разделение основывается на различных методах подхода к обезвреживанию выбросов данных групп. Парогазовым выбросам присуще наличие значительных количеств водяного пара, а для ряда выбросов характерно состояние насыщения водяным паром. Большинство вредных веществ в выбросах представляет собой серосодержащие соединения, которые являются токсичными веществами, неблагоприятно влияющими на жизнедеятельность растительного и животного мира.
В настоящее время к вопросу очистки дурнопахнущих парогазовых выбросов сульфат-целлюлозного производства существует двоякий подход: первое – обезвреживание с получением какого-либо ценного побочного продукта; второе – доведение выбросов вредного вещества до санитарных норм, в лучшем случае с рекуперацией уловленного компонента в производство.
Очистка газопылевых выбросов предусматривает несколько иной подход.
Используют пылеулавливающие установки. Современные установки для улавливания серосодержащих газообразных компонентов, присутствующих в дымовых газах СРК, основаны на абсорбционном методе очистки. Различаются эти установки между собой аппаратурным оформлением, режимами управления и свойствами абсорбента, причём последние являются определяющими при выборе схемы газоочистки. В настоящее время для промывки дымовых газов СРК применяются как щёлочные, так и нейтральные растворы, в ряде случаев в щёлочную орошающую жидкость добавляются твёрдые вещества, способные сорбировать и окислять серосодержащие газообразные компоненты.
Однако возникает ряд трудностей, сопряжённых с традиционным подходом к проблеме очистки: образование труднообрабатываемых стоков и шламов при абсорбционном методе очистки, необходимость регенерации адсорбента, влияния высокого содержания водяных паров на эффективность пылеулавливания, отсутствие утилизации тепла парогазовых выбросов и, как следствие, тепловое загрязнение атмосферы.
В настоящее время в ЦБП для очистки выбросов из РП СРК применяются:
-
Одноступенчатые схемы в целях утилизации тепла и очистки от пылевых частиц плава и серосодержащих газов;
-
Двухступенчатые схемы, где первая ступень (секционный кожухотрубный теплообменник) служит для утилизации тепла, а вторая – для очистки от загрязняющих веществ.
Двухступенчатые схемы обычно состоят из теплообменных устройств в качестве первой ступени и скруббера или струйного газопромывателя – в качестве второй, например, принципиальная двухступенчатая схема: трёхходовой по ходу газов теплообменник является первой ступенью, струйный газопромыватель – второй. Анализ работы установок на Братском ЛПК и Байкальском ЦБК показывает, что эффективность улавливания пылевых частиц составляет 70…80 %, а абсорбция сероводорода 92…95 %. Реализация двухступенчатой схемы очистки выбросов из РП СРК связана со значительными капиталовложениями, так как кроме теплообменника и струйного газопромывателя он включает в себя каплеуловитель, промежуточные ёмкости, насосы, разветвлённую систему трубопроводов. Установка энергоёмка и металлоёмка, требует значительного количества свежей воды для теплообменника и орошающих растворов. Необходимость применения тягодутьевых устройств в данной схеме приводит к большому выносу щёлочной капельной влаги в атмосферу, что снижает надёжность работы тягодутьевых устройств, увеличивает потери химикатов, разрушает кровлю цеха и загрязняет атмосферу.
Конденсационный метод очистки газов и аппарат – поверхностный конденсатор.
Метод основан на конденсации водяного пара на охлаждённой поверхности конденсатора. При этом пар, охлаждаясь, переходит в жидкую фазу, а образующийся конденсат непрерывно отводится. Аппарат действует при использовании самотяги вытяжной трубы. Симметричное расположение конденсатора и вытяжной трубы относительно оси движения парогазовой смеси вверх в межтрубном пространстве позволяет избежать застойных зон. Работа установки заключается в следующем: конденсатор представляет собой две трубы, одна внутри другой, между которыми располагается вытяжная труба, в которой идёт пылепарогазовая смесь. В полости двух труб конденсатора подаётся охлаждающий агент – вода, в результате находящийся внутри вытяжной трубы пылепарогаз начинает конденсироваться на охлаждаемых стенках и стекать по ней в отборник конденсата. Процесс газоочистки регулируется по температуре воды на выходе из аппарата. Большое значение имеет осуществление тепло- и массообмена в конденсаторе, где можно достичь взаимодействия между плёнкой конденсата, образующегося на поверхности охлаждаемых труб, и потоком пылепарогазовой смеси с минимальными энергозатратами.
В аппаратах этого типа можно достичь:
-
Интенсивного взаимодействия между стекающей плёнкой жидкости, образующейся при конденсации паров воды из парогазовых выбросов на охлаждаемых трубах и парогазовой смесью;
-
Наименьшего удельного сопротивления аппарата. Когда паровая смесь движется меж охлаждаемых труб (в межтрубном пространстве), её объём уменьшается в процессе конденсации водяного пара.
Трудности, возникающие при осуществлении метода:
Основной сложностью является определение площади теплообмена, которая должна обеспечить конденсацию парогазовой смеси при заданном расходе охлаждающей воды с заданной её температурой. Интенсивность конденсации парогазовых смесей обусловлена: изменением по высоте скорости парогазового потока и плотности орошения; диффузионными процессами на границе раздела пар – жидкость; влиянием поперечного потока вещества на гидродинамику плёнки; возможностью уноса жидкой фазы в поток пара и срыва плёнки парогазовым потоком – это сложные факторы, определяющие интенсивность тепломассоотдачи, и которые проявляются в зависимости от геометрических характеристик трубного пучка конденсатора.
Достоинства метода и установки:
-
Уменьшение вредного воздействия на атмосферу содовой пыли и дурнопахнущих серосодержащих газов. Так как эффективность пылеуловителя 95 – 99 %.
-
Уменьшение наличия водяного пара в парогазовой смеси, что облегчает её очистку.
-
Возврат в производство ценного химического компонента – карбоната натрия.
-
Возможность использования тепла конденсации. Охлаждающая вода, проходя по трубам конденсатора, подогревается до температуры требуемой в технологическом цикле.
-
Для транспортировки выбросов по межтрубному пространству конденсатора можно пользоваться самотягой вытяжной трубы, предусмотренной в технологии растворения плава, так как поверхностный конденсатор обладает низким гидравлическим сопротивлением.
Очистка сбросов в гидросферу с ЦБК.
Наиболее эффективным следует считать включение в технологический процесс замкнутой системы водоснабжения ЦБК, где вода многократно проходит технологический цикл. После каждого цикла производится её очистка и отстаивание. Воду необходимо очищать от волокон, наполнителей, клейких веществ, загрязнений различными примесями и остаточными химикатами. Обработка воды осуществляется в несколько операций: сортирование, очистка, флотация, промывка. Одним из действенных методов очистки воды является её фильтрация через фильтр, но метод ограничен величиной дисперсности фильтра и наличием загрязнителей, диаметр молекул которых, меньше диаметра молекул воды. Другой метод – отстаивание воды позволяет только удалить взвешенные частицы. Также часто используются химические методы очистки сточных вод, где в воду добавляют химические вещества, которые вступают в химические реакции с загрязнителями, что приводит к их разложению до безопасных компонентов, нейтрализации либо выпадению в осадок. Существуют также биологические методы очистки, связанные со способностью некоторых организмов (бактерий, водорослей, микроорганизмов и др.) аккумулировать и перерабатывать отдельные химические соединения и элементы.
Метод очистки сточных вод предприятия с помощью ультрафиолетового облучения.
Одним из эффективных методов является облучение воды бактерицидным ультрафиолетовым облучением. В его основе лежит обеззараживающая способность жёсткого ультрафиолетового облучения. Технология очистки такова: в закрытой ёмкости, в которой в обрабатываемую воду предварительно вводят отмытый, и измельчённый кремень включают, находящиеся под крышкой ёмкости источник ультрафиолетового излучения и источник облучения дневным светом. Производится выдержка, удаление биоосадка, отключение источников облучения. Очищенная таким способом вода удовлетворяет всем требования и нормативам по чистоте, вкусовым и цветовым качествам.
В качестве источника ультрафиолетового излучения используют лампу типа БУВ – 30. В качестве источника дневного света – гелий-неоновая лампа типа ЕВЗ ЛП – 2. Для контроля теплового режима используют встроенный термометр, а тепловой режим обеспечивается теплообменником. Размер фракций кремня 5…35 мм.
Данный способ наиболее эффективен для удаления органических веществ (в том числе фенолов и диоксинов), сульфатов и соединений хлора.
Его эффективность по этим и многим другим веществам равна 96 – 99 %.
Применение новых технологий в целлюлозно-бумажном производстве.
Бисульфитная варка в сульфит-целлюлозном производстве.
Специалисты ОАО «Центральный научно-исследовательский институт бумаги» совместно со специалистами ряда целлюлозно-бумажных предприятий разработали технологию модифицированной бисульфитной варки целлюлозы на магниевом основании с регенерацией химикатов и теплоты, при использовании которой решаются многие экологические проблемы ресурсо- и энергосбережения.
Внедрять новую технологию можно поэтапно. На первом этапе целлюлозный завод переводится с сульфитной на модифицированную бисульфитную варку на натриевом основании (варочный раствор готовится с использованием кальцинированной соды). На втором этапе натриевое основание на 50 % заменяется на магниевое (для приготовления варочного раствора используют 50 % оксида магния вместо соды). На третьем этапе всё производство переводится на 100 % магниевое основание. Внедрение процесса регенерации из отработанных щёлоков позволяет вернуть в производственный цикл 70 – 85 % химикатов и получить такое количество теплоты, которого достаточно для полного обеспечения работы выпарной станции целлюлозного производства.
Первый этап внедрения новой технологии варки не требует значительных капитальных затрат. В настоящее время на модифицированную бисульфитную варку уже переведено 5 крупных предприятий отрасли.
Проведённый расчёт ущерба окружающей среде при переходе с сульфитной на бисульфитную варку применительно к Камскому ЦБК показывает, что снижение загрязнения по общим стокам составляет 12 % по взвешенным веществам, 19.2 % по сухому остатку, 19 % по БПК, 19.2 % по фенолам, столько же по аммонийному азоту. То есть в среднем по веществам, учитываемым в сбросе в водоёмы, снижение составило 17 %. Таким образом, улучшать экологию предприятия экономически выгодно. Кроме того, на Камском ЦБК в 2 раза сократились выбросы сернистого ангидрида в атмосферу, что составляет 83,3 т в год.
Получаемая по новой технологии целлюлоза имеет достаточно высокую белизну (до 70 %) и применяется для изготовления газетной, книжно-журнальной, типографской и других видов бумаги в небелёном виде. Исключение отбелки целлюлозы для газетной бумаги позволило снизить сброс органики на очистные сооружения на 88 кг/т целлюлозы.
Модифицированная бисульфитная варка позволяет перерабатывать на целлюлозу любые виды древесины, в том числе низкокачественную древесину – сухостойную, повреждённую гнилью и др.
Использование низкокачественной древесины в составе сырья сульфитных предприятий расширяет сырьевую базу, а также улучшает структуру лесопотребления. При этом снижаются выбросы парниковых газов на лесосеках от гниения низкокачественной древесины, обеспечиваются хорошие условия для роста здоровых деревьев и они вырабатывают больше кислорода.
На Камском ЦБК в настоящее время используется 75 % магниевого основания и только 25 % натриевого. Главные достоинства магниевого основания – невысокая стоимость и возможность организации простой и надёжной системы регенерации химикатов и теплоты. Варка на смешанном магниево-натриевом основании обеспечивает получение целлюлозы с пониженной жёсткостью и высокими механическими показателями. Разработан и создан циклонный сепаратор уловитель, с помощью которого достигается снижение объёма выброса золы в атмосферу в 3 раза и утилизация тепла парогазовой смеси. Разработан проект модернизации отбельного цеха Сокольского ЦБК с целью обеспечения внедрения новой технологии отбелки волокнистых полуфабрикатов с полным исключением хлора и его соединений, что предотвращает поступление в окружающую среду токсичных хлорорганических соединений, и повышает качество белёной целлюлозы. Также здесь внедрена новая технология производства газетной бумаги с микрокапсулированными продуктами в композиции, что уменьшает расход волокнистых полуфабрикатов на 5 – 8 % и повышает качество газетной бумаги.
При наличии магний-регенерационного котла (МРК) можно утилизировать 90 – 95 % образующихся сухих веществ отработанных щёлоков. Таким образом, на очистные сооружения поступает только 5 – 10 % сухих веществ.
На утилизацию и обезвреживание в МРК могут быть направлены газовые выбросы от большинства источников, а также жидкие органические фракции, образующиеся при очистке варочных растворов от цимола и грязных конденсатов варки и выпарки. Вредные летучие органические соединения, такие, как метанол, терпеновые, фурфурол и другие, сгорают в МРК с образованием воды и углекислого газа, а диоксид серы газовых выбросов утилизируется вместе с диоксидами серы, образующимися при сжигании щёлока.
В дымовых газах МРК нет твёрдых частиц, содержание SO2 после прохождения системы абсорбции не превышает 0.005 – 0.01 %, что в 5 – 10 раз меньше, чем при сжигании угля или мазута. Сжигание щёлоков проходит при температуре более низкой, чем угля и мазута, а дымовой газ проходит 3 – 4-х ступенчатую мокрую очистку, что позволяет снизить выбросы оксидов азота.
Нейтрализация щёлоков перед их упариванием при наличии системы регенерации позволяет снизить потери SO2 на этой стадии и на 80 – 90 % уменьшить загрязнение конденсатов летучими кислотами иSO2. Следует отметить, что в этом случае затраченный на нейтрализацию оксид магния регенерируется при последующем сжигании щёлоков в МРК.
В России такая система регенерации применяется на ОАО «Красноярский ЦБК», а в республике Беларусь – на АО «Светлогорский ЦКК».
На АО «Светлогорский ЦКК» при степени отбора сухих веществ щёлока около 90 % степень регенерации химикатов достигает 73 – 75 %, а расходы серы и каустического магнезита составляют 28 – 30 кг/т полуфабриката, то есть в 4 раза меньше, чем на предприятии без системы регенерации. Таким образом, наиболее перспективным для решения экологических и экономических проблем сульфит-целлюлозных предприятий является перевод их на модифицированную бисульфитную варку с использованием магниевого основания с регенерацией химикатов из отработанных щёлоков.
Принципиальная схема процесса модифицированной бисульфитной варки целлюлозы с регенерацией химикатов и теплоты.
Отходящий газ в атмосферу.
Теплота. Дымовые газы. Т=50÷600С, SO2=0.005÷0.01%
МРК
Т=1200÷ 13000С

Золоулавливатель

Система абсорбции

Воздух
Избыточные Сырой сульфит-
30-50кг Зола газы ный раствор
мазута на
1
Приготовление суспензии Mg(OH)2


Кислотный цех
т упарен- Суспензияного щёлока
Сырой
бисульфитный
раствор
у
парен ный Газовые выбросы Сера (20-25кг/т)
щёлок Варочный Каустический маг-
Выпарная станция.


-ные газы раствор Холодная вода
Т
О
Щелок
Газовые
Щёлок выбросы
РН=6÷6.5 – 10% сухих веществ
Варочный цех


Нейтрализация



Избыточные газы Щёлок Щепа
Ж
Промывная станция



Переработка конденсата


Кислый Целлюлозная
конденсат масса промытая
целлюлозная масса
конденсат
На очистные сооружения (15-
Условно чистый конденсат 40кг органики /т целлюлозы)
На очистные сооружения
(1-2 кг органики /т целлюлозы)
Технология производства теплоизоляционных и отделочных материалов из отходов целлюлозно-бумажной промышленности.
Многотоннажные отходы целлюлозно-бумажной промышленности (СКОП) в последнее время всё чаще привлекают внимание исследователей и производственников. Имея в своём составе целлюлозу и каолин, эти отходы (при некоторой модификации химическими добавками) могут быть использованы для изготовления теплоизоляционных, отделочных и конструктивно-теплоизоляционных материалов и деталей.
Долгое время использование СКОПа сдерживалось его высокой влажностью (до 96 %) и необходимостью больших энергозатрат при изготовлении стройматериалов. Разработанные методы сушки материалов токами высокой частоты и горячего прессования изделий позволили частично решить этот вопрос.
На основе СКОПа с добавками (опилки, перлит, зола, антисептики, антипирены, клееканифольная эмульсия, битумная эмульсия и др.) можно получать строительные материалы прочностью от 1 до 10 МПа, плотностью 250 – 1200 кг/м3 и теплопроводностью 0.078 Вт/(м*К) (для плотности 250 кг/м3).
Введение в состав композиции клееканифольной эмульсии в количестве 2% массы сухих компонентов снижает водопоглощение на 35 – 40 %. Обязательными компонентами теплоизоляционного материала являются антисептики и антипирены. Введение в состав композиции 3% салициланилида в виде 8%-ного раствора обеспечивает биостойкость получаемых изделий. Введение добавок аммофоса, диаммония фосфата, дт, дмф и других повышает огнестойкость материала и снижает потери массы при сгорании более чем в 5 раз. Материал, включающий любую из упомянутых добавок, относится к группе трудносгораемых. Теплоизоляционный материал изготавливается по наливной технологии. Его сушка осуществляется конвективным способом в прямоточно-противоточном режиме. Время сушки 24 часа Удельный расход условного топлива составляет 230 кг/м3. При сушке материала токами высокой частоты время сушки снижается в 6 раз, в несколько раз уменьшается расход условного топлива.
Отделочные и конструктивно-теплоизоляционные материалы на основе бумажной макулатуры можно изготовлять методом горячего прессования. При этом состав материала и технология его изготовления не отличается от изготовления теплоизоляционного материала. После разрезки ковра по формату, плиты устанавливаются на поддоне и через загрузочное устройство подаются в пресс горячего формования. Температура, обеспечиваемая прессом должна быть 130 – 140 0С, удельное давление 2.5 МПа, скорость прогрева 1.5 мм/мин, толщина плит 8 – 16 мм. После опрессовки и размыкания пресса плиты направляются на склад, или склеиваются до нужной толщины. Для склейки плит можно применять тот же пресс или пресс холодного прессования.
В отличие от мокрого способа, по которому изготовляются изделия из СКОПа, бумажные отходы измельчаются в молотковой дробилке, а затем смешиваются со связующим (измельчёнными отходами полиэтилена) и с огне- и био- защитными добавками. Полученная смесь формируется по технологии изготовления отделочных плит. Физико-механические свойства изделий изготовленных сухим способом, не отличаются от свойств плит, полученных из СКОПа.
Технологическая схема производства теплоизоляционных плит на основе отходов бумажных фабрик и макулатуры.
17
16
15



7


8

6

19
22



18

4



5
3


21
2
1
-
Измельчитель спецмакулатуры.
-
Дозатор полимерного связующего.
-
Накопительный бункер для измельчённой спецмакулатуры.
-
Дозатор измельчённой макулатуры.
-
Дозатор антисептика и антипирена.
-
Смеситель.
-
Складской бункер.
-
Формующее устройство.
-
Установка для подачи нижнего листа бумаги.
-
Установка для подачи верхнего листа бумаги.
-
Обрезная пила.
-
Задающий транспортёр.
-
Устройство для подачи в пресс.
-
Пресс горячего прессования.
-
Устройство загрузки.
-
Транспортёр разгрузки.
-
Штабелеукладчик.
-
Вспомогательный стол.
-
Установка для обрезки длинных кромок.
-
Установка для обрезки коротких кромок.
-
Установка бандажирования.
-
Измельчитель отходов.
Проблема утилизации отходов целлюлозно-бумажной промышленности и переработки макулатуры.
Очень остро стоит в настоящее время проблема отходности целлюлозно-бумажных комбинатов. Многотонные отходы этих предприятий складируются, занимая большие площади и отрицательно воздействуя на окружающую среду.
Наиболее остро в настоящее время стоит проблема утилизации лигнина и шламов.
Основными методами борьбы с отходами являются их сжигание либо переработка с целью получения полезных продуктов. Факторами ограничивающими возможность термической утилизации отходов являются высокая загрязнённость, низкая температура плавления некоторых отходов, наличие крупногабаритных включений и значительных колебаний насыпной плотности сжигаемых отходов. К приемлемым технологиям сжигания относят колосниковое сжигание и сжигание в кипящем слое. Основным достоинством же термических методов является их относительно низкая стоимость. Переработка отходов бумажных фабрик эффективна сточки зрения экологии, но убыточна по экономическим показателям. С другой стороны из отходов отрасли можно получить много ценных и полезных продуктов. Разберём это на примере переработки и использования лигнина
Лигнин присутствует в многотоннажных древесных отходах.
Содержание компонентов в растительном сырье.
Общая зола % | Лигнин % | Геми-целлюлоза | Целлюлоза % | |
Мягкая древесина. | 0.4 | 27.8 | 24 | 41 |
Твёрдая древесина. | 0.3 | 19.5 | 35 | 39 |
Солома злаков. | 6.6 | 16.7 | 28.2 | 39.9 |
Физические характеристики лигнина.
-
Удельная масса – 0.2 ÷ 0.3 г/см3.
-
Влагоёмкость – 300 ÷ 450 %
-
Кислотность – 1.9 ÷ 2.2.
Химический состав 100г сухого вещества лигнина.
Вещество. | Вес, мг |
Нитратный азот | 5.4 |
Подвижный фосфор | 7 |
Калий | 167.5 |
Кальций | 106 |
Магний | 66 |
Цинк | >4 |
Марганец | 1.8 |
Медь | 0.33 |
железо | 2.5 |
Кроме того, лигнин содержит редуцирующие вещества, полисахариды метоксильных, карбоксильных и фенольных групп, золы и кислоты. Лигнин содержит 78 – 97 % органического сырья.
Лигнин – аморфное, полифункциональное высокомолекулярное ароматическое соединение, состоящее из фенилпропановых структурных единиц, и не является веществом постоянного состава. Лигнин – конечный продукт растительного метаболизма.
В России на 15 заводах выпускающих сульфитную целлюлозу ежегодно получают 2.5 млн. т. органических веществ растворённых в сульфитном щёлоке. А основная часть лигнина в виде лигносульфоновых соединений переходит в сульфитный щёлок. Лигносульфониты образуют комплексы с ионами ряда металлов и, следовательно, их применяют для удаления из почвы элементов, препятствующих нормальному росту растений. Гидролизный лигнин – универсальный сорбент, увеличивающий воздухопроницаемость и пористость, улучшающий структуру и другие физико-химические свойства почв. Лигнин используют при выращивании съедобных грибов, используют в качестве сорбента азот-фиксирующих бактерий, а также используется в качестве компоста в сельском хозяйстве.
В утилизации лигнин используется в составе органо-минеральных удобрений (наличие в шламовых отходах ростовых факторов, а также макро- и микроэлементов позволило рекомендовать их в качестве составных частей органо-минеральных удобрений). Органо-минеральные удобрения способны адсорбировать хлор и сульфат ионов, содержащихся в почве. Повышать накопление почвой азота, фосфора и калия.
Различные виды лигнинов в почве под воздействием почвенных бактерий постепенно превращаются в гумусовые вещества, которые способствуют плодородию почвы. Применяют также аммонизированный лигнин, где часть азота (25%) находится в виде сульфат аммония, а 75% азота химически связано с лигнином, поэтому он обладает пролонгированным характером действия. При внесении в почву он быстро не вымывается, а усваивается растениями постепенно, по мере разложения лигнина микроорганизмами до низкомолекулярных соединений. Почва обогащается микро- и макроэлементами. Активируются микробиологические процессы, за счёт чего повышается плодородие почвы.
Проблемы, связанные с переработкой макулатуры на целлюлозно-бумажных комбинатах.
1>