165833 (739972), страница 2
Текст из файла (страница 2)
или X У 2+ + D Си + 2хе~ -М- УС , где У 2+ - частично восстановленная форма, участвующая в реакции катодного внедрения. Исследование особенностей катодного поведения СО при Е показало, что на начальном этапе плотность тока возрастает в несколько раз.
Процесс по механизму периодических окислительно-восстановительных реакций в твердой фазе и позволяет предположить, что в системе у-Си-0 возможно формирование структур со сверхпроводящими свойствами.
Материал подложки (Fe; Al, Ma.) электрода оказывает сильное влияние на кинетику внедрения иттрия. Как на начальном этапе поляризации, так и в стационарных условиях величина i для оксидированных электродов характеризуется рядом
Си(Ре) > Си(А1)> Си(Ма)
Последовательность ряда нарушается при последующем модифицировании слоев фазы У-Си-0 кальцием: более чем на порядок возрастает на УС(Мо)^0 электроде, практически остается в тех же пределах для У-Си(А1)-0 и становится ниже в случае подложки из стали. Вместе с тем на начальном этапе токи внедрения Са в У-Си(Ме)-0 выше, чем иттрия в Си(Ме)-0 электроды. Последовательность в ряду активирующего влияния материала подложки может меняться с изменением температуры (рис.4). Характер зависимости lut- l/T позволяет говорить, что периодические окислительно-восстановительные процессы в формируемых фазах состава У-Си-0, Са-У-Си-0 сопровождаются структурными преобразованиями, чувствительными к материалу подложки.
С целью получения дополнительных данных о механизме формирования оксидного слоя состава Са-У-С-0 были сняты циклические катодно-анодные потенциодинамические кривые в растворе Ca(CgHgSOg) Д области потенциалов от -1,4 до +0,8 В. Показано, что расширение области циклирования до +0,75...+0,808.
способствует накоплению Са на электрод; внедрение Са происходит как в медную основу, так и в поверхностный оксидный слой. После выдержки в атмосфере "активного" кислорода, особенно если ей предшествовала термообработка, происходит снижение тока на электроде вследствие уменьшения количества поверхностных дефектов, участвующих в реакции. Характер электрохимической обработки оказывает сильное влияние на содержание в поверхностном слое меди кислорода и кальция и на формирование микроструктуры.
В главе шестой рассмотрено влияние условий поляризации на фазовые превращения в системе Са-У-Си-0 и возможность формирования структуры подобной ВТСП. При времени оксидирования 5 мин в растворе УаОН образуется ячеистая структура.
Последующая катодная поляризация в растворе УС в ДШ при -1,8 В сопровождается образованием кристаллов новой фазы. Увеличение времени внедрения иттрия приводит ЭЖ еще большему насыщению поверхности оксидного слоя иттрием. Последующее катодное внедрение Са из раствора Са(С104)2 в ДШ при Екп= -2,6 В в течение 2,6,12 ч.) сопровождается коалесценцией и коагуляцией кристаллов и образованием монолитного слоя. Последующая выдержка Си-0 с внедренным У и Са в растворе УаОН в токе "активного" кислорода приводит к росту ячеистой структуры и увеличению количества дефектов на поверхности (рис.11). Осадок зарастает мелкодисперсной фазой. Аналогичный эффект оказывает и термообработка образцов (950 °С, 30 мин.) перед выдержкой в токе 0g(рис. 12).Увеличение длительности термообработки приводит к растрескиванию слоя и образованию густой сетки мелких пор. По границам трещин просматривается отслаивание оксидной пленки. Сопоставление микроструктурных исследований с результатами рентгеноструктурного анализа (рис.13) показало, что в исследуемой системе возможно формирование структур подобных ВТСП.
Глава седьмая посвящена рассмотрению технологических рекомендации по разработке нового электрохимического процесса получения сложных оксидов купратной системы Са-У-Си-0 со структурой, подобной ВТСП, на основе обобщений результатов эксперимента: анодное оксидирование (УаОН 150 г/л, i-= 1 А/дм2,80-90°С, 30 мин.) ; катодная обработка по методу внедрения последовательно в насыщенном растворе УС1д или УРО^Е^ -1,8 В; i =12 ч.) и в растворе Са (С4)2 1 моль/л в ДМФ (Е= -2,6 В; tg =12 ч.) ; термообработка при 950 °С 2 часа; обработка в токе "активного" кислорода (1 ч.) .
Подготовка поверхности перед 'формированием оксидного слоя Са-У-Си-0 на медной основе или чужеродных подложках для обеспечения хорошей сцепляемости осадка и обеспечения функциональных свойств предполагает механическое и электрохимическое полирование, систему промывок и сушку образцов при 100 °С с последующим охлаждением вместе с печью в течение 6 час. Перед обработкой кислородом отожженные при 950°С образцы должны остывать вместе с печью в течение 12 час.
В ы в о д ы
1. Впервые исследовано электрохимическое поведение меди в апротонных органических растворах солей иттрия и кальция.
В широком интервале потенциалов (-1,8...-3,2 Ъ), температур (-70...+70°С}и длительности катодной поляризации (до 24 час.) . Установлено, что процессу катодного внедрения кальция и иттрия в медный электрод предшествует стадия разряда-ионизации с образованием ионов промежуточной валентности. Диффузия внедрившихся атомов в глубь Си электрода подчиняется уравнению, что обусловлено влиянием замедленной кристаллизационно-химической стадии. Найдено, что на начальном этапе поляризации происходит разработка поверхности электрода и увеличение концентрации поверхностных дефектов. Показано, что при замене ДШ на ПК плотность тока на электроде снижается примерно в 10 раз. Этот эффект связан с увеличением вязкости и плотности ПК и более низкой его электропроводностью. Энергия активации процесса внедрения кальция в медь при температурах выше О °С составляет 59,4 кДж/моль и уменьшается до 24,8 кДж/моль в области отрицательных температур.
-
На оксидированном медном электроде плотность тока катодного внедрения i п кальция снижается в несколько раз. Зависимость i jq-j от длительности предварительного оксидирования носит периодический автоколебательный характер. Амплитуда колебаний тока возрастает, а их частота уменьшается по мере установления в системе стационарного состояния.
-
Высказано предположение, что накопление иттрия в электроде сопровождается изменением стехиометрического состава формирующейся фазы и, как следствие, снижением кинетического коэффициента &0./ь4/тот 0,90 до 0,095 Кл/см2*с.
-
Показано, что зависимость величины f от 1/Т отклоняется от линейного, что может быть связано с сильным разупорядочивающим действием изменения температуры на поведение ионов в структуре растворителя и внедрившихся атомов У в металле электрода.
Установлено, что катодное внедрения иттрия в оксидированную медь протекает по механизму периодических окислительно-восстановительных реакций в твердой фазе.
5.Исследовано катодное внедрение иттрия в оксидированные пленки меди на подложках из стали, алюминия и магния. Установлено, что плотность тока катодного внедрения иттрия наиболее высока в случае оксидированных Си(Ре)электродов и снижается в ряду Си (Ре) >окс Си(А1) > окс Си(м) . Последующее модифицирование слоев У-Си-0 фазы кальцием характеризуется на порядок более высокой плотностью тока для электродов на М0- подложке и практически не изменяется на подложках из А1 и стали. Характер зависимости YSL~ 1//Т позволяет говорить, что периодические окислительно-восстановительные реакции в (формируемых фазах У-Си-0 и Са-У-Си-0 сопровождаются структурными преобразованиями, очень чувствительными к материалу подложки..
7.Показано, что расширение области циклирования до +0,75 В способствует накоплению кальция на электроде; внедрения кальция происходит как непосредственно в медную основу, так и в поверхностный оксидный слой; снижение тока на электроде после выдержки в атмосфере активного кислорода, особенно если ей предшествовала термообработка, связано с уменьшением количества поверхностных дефектов, участвующих в реакции; характер электрохимической обработки оказывает сильное влияние на содержание в поверхностном слое кислорода и кальция и на формирование микроструктуры.
-
Результаты микроструктурных исследований позволили установить, что процесс роста фаз У-Си-0 и Са-У-Си-0 в толщину происходит путем последовательного послойного наращивания слоев и начинается в местах скопления дефектов. Увеличение длительности обработки в токе кислорода (выше 12 час), как и увеличение длительности предварительной термообработки с более 1 час.) приводит к укрупнению ячеек структуры и растрескиванию.
Совокупность полученных данных показывает принципиальную возможность электрохимическим способом формирования оксидных фаз состава Са-У-Си-0 со структурой, подобной ВТСП. Использование метода катодного внедрения открывает возможность управления нестехиометрией фазы и достаточно простой автоматизации технологического процесса. Технологические рекомендации.
Основное содержание работы диссертации изложено в следующих работах:
-
Щербинина О.Н.Гусев А.В.Попова С.С.Катодное внедрение кальция и иттрия в оксидированную медь //Современные электрохимические технологии: докл. науч.-техн.конф,- Екатеринбург, 1993. - С.11-12.
-
Попова С.С. Крылова Г.А. Щербинина О.Н. Васильева Г.Н. Процессы фазообразования на алюминиевом электроде в растворах солей редкоземельных элементов // Анодный оксид алюминия: Матер, междунар. науч.-техн.конф. "Интеранод-93". -Казань, 1993. - С.76-77.
-
Попова С.С. Щербинина О.Н. Исследование возможности получения сверхпроводящих материалов методом электрохимического внедрения элементов в твердые электроды // Тр.Междунар.науч. -техн. конф. CEF 94 "Актуальные проблемы фундаментальных наук". Симпозиум 5 "Промышленные технологии в современной техносфере". - М.:Техносфера-Информ, 1994.
-
Нужнова Т.Г. Щербинина О.Н. Попова С.С. Исследование возможности электровыделения щелочноземельных металлов на медном электроде по механизму электрохимического внедрения // Тез.докл. IX Всерос. совещ.,- Киров, 1994.
-
Щербинина О.Н..Попова С.С,Влияние условий формирования слоя сплава Ре-Си на кинетику катодного внедрения иттрия //Поддержание и восстановление работоспособности транспортных средств: Тез.докл. междунар.науч.-техн.конф. - Саратов, 1995.
6. Щербинина О.Н. Нужнова Т.Г. Бженникова А.Д. Особенности формирования слоя меди на титане при электроосаждении из сульфатных растворов с добавками хлорид-ионов // Там же.- С.66-67.
7. Щербинина О.Н. Нужнова Т.Г. Попова С.С. Влияние дефектов поверхности на кинетику сплавообразования при катодном внедрении иттрия в оксидированные металлы // Прогрессивная технология и вопросы экологии в гальванотехнике и производстве печатных плат: Матер. конф. - Пенза, 1996. - С.36-37.
















