165292 (739462), страница 7

Файл №739462 165292 (Основы химии) 7 страница165292 (739462) страница 72016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 7)

Cs –2,62

Fr – 2,71 рис. 3.1.

В периодах радиуса атомов по мере увеличения заряда ядра, т.е. от начала к концу периода, уменьшается. Хотя в атомах элементов, находящихся в одном периоде, содержится одно и тоже количество электронных квантовых уровней, но по мере увеличения числа электронов происходит уменьшение радиусов атомов от начала к концу периода. Этот факт отличается тем, что при увеличении заряда ядра и числа электронов усиливается кулоновское взаимодействие между электронной оболочкой и ядром ( F=z*e/r 2 ), которое приводит к сжатию атома. Так, в ряду элементов второго периода от Лития до Фтора радиусы атомов уменьшались примерно в 2,5 раза.

В группах сверху вниз радиусы атомов увеличиваются, т.к. с каждым новым периодом появляется еще один квантовый уровень, который начинает заполняться электронами.

На рисунке стрелкой указана только общая тенденция изменения радиусов. Но это не значит, что в указанном направлении имеется линейная зависимость. На следующем рисунке отражен характер изменения радиусов атомов для интервала 100 элементов. (рис. 3.2.).

В рядах d-элементов изменения радиусов менее значительны, чем у s- и p-элементов. У d-элементов идет заполнение электронами d-подуровня предвнешнего квантового уровня и поэтому величина сжатия атома в целом меньше, чем в случае увеличения числа электронов на внешнем уровне. В ряду d-элементов величина сжатия радиусов атомов составляет всего около 0,3А0 (d-сжатие).

В ряду f-элементов величина сжатия еще меньше. Дело в том, что у f-элементов идет заполнение f-подуровня предпредпоследнего уровня, и увеличения заряда ядра и числа электронов очень мало влияет на размеры атомов. Величина f-сжатия составляет всего 0,1А0. Однако это незначительное изменение радиусов в ряду f-элементов влияет на свойства последующих элементов. И, естественно, сами f-элементы, имея очень близкие радиусы атомов, схожи по химическим свойствам.

Полные данные по радиусам атомов представлены в Периодической системе Д.И. Менделеева, дополненной Кембелом значениями радиусов атомов. (табл.3.3.). Радиусы атомов были определены рентгеноскопическим методом

3.4.2. Закономерность изменения энергии ионизации.

Химическую активность элемента можно оценить способностью его атома терять и приобретать электроны. Способность атома отдавать электроны количественно оценивается энергией ионизации.

Энергией ионизации называется такое количество энергии, которое необходимо затратить для отрыва одного элемента от нейтрального атома.

Энергию ионизации обозначают буквой I и выражают в кДж/моль или ЭВ/атом.

A +I=A++e

Многоэлектронные атомы характеризуются несколькими энергиями ионизации: I1, I2, I3,…, соответствующими отрыву первого, второго, третьего и т.д. электронов. При этом, всегда I1< I2< I3< In, т.к. с увеличением числа отрываемых электронов растет заряд образующегося положительного иона, который сильнее притягивает электроны. Для характеристики химической активности элемента обычно пользуются значением первой энергии ионизации I1 (будем обозначать ее просто I). энергия ионизации тесно связана с размерами атома. Характер изменения энергии ионизации по периодам и группам рассмотрим на примере элементов второго периода и главной подгруппы первой группы. Результаты приведены на следующем рисунке. Значения I дается в ЭВ/атом.


Li Be B C N O F Ne

ЭВ/атом

5,4 9,1 8,3 11,3 14,5 13,6 17,4 21,6

Na – 1,86

K – 2,31 Направление увеличения

энергии ионизации.

Rb – 2,44

Cs – 2,62

Fr – 2,71 рис. 3.3.

В периодах слева направо энергия ионизации атомов увеличивается. В группах сверху вниз – наоборот, энергия ионизации уменьшается. Из рисунка видно, что направление увеличения энергии ионизации соответствует направлению уменьшения радиусов атомов. Следовательно, чем меньше радиус атома тем труднее отрывать электрон, тем больше затрачена энергия ионизации.

Однако (как это видно из рис.3.4.) характер изменения энергия ионизации не соответствует прямой линии, но имеет периодический характер. В пределах каждого периода наблюдается «местные» максимумы. Это связано с порядком заполнения электронами квантовых подуровней. Во втором периоде сначала электроны заполняют s-подуровень, поэтому при переходе от элемента с электроном ns1 (Li) к элементу с электроном ns2 (Be) энергия ионизации возрастает. Затем идет скачек вниз (уменьшение) обусловленный заполнением электронами p-подуровня, но далее энергия ионизации возрастает при переходе от элемента с np1 (B) к элементу с nр3 (С).

Обусловленное заполнением подуровня по правилу Гунда (т.е. по одному электрону на орбиталь). Затем снова скачек вниз (уменьшение I). Начинается заполнение вторыми электронами np-подуровня. И энергия ионизации снова возрастает (от кислорода к неону). Местные максимумы и минимумы на возрастающем участке кривой в пределах подуровня отражает явление вторичной периодичности. Максимумы соответствует элементам, у которых внешние подуровни заполнены полностью ns2, np6 или наполовину np3. Это свидетельствует о повышенной устойчивости таких конфигураций.

В группах (в подгруппах s- и p-элементы) сверху вниз энергия ионизации уменьшается. Это обусловлено увеличением радиусов атомов: чем больше размер атома, тем легче от него оторвать электрон, тем меньше значение энергии ионизации.

В подгруппах d-элементов, кроме подгруппы скандия, как правило, сверху вниз повышается. Например:

V I1=6,74 ЭВ/атом.

Nb I1=6,88 ЭВ/атом.

Ta I1=7,88 ЭВ/атом.

Повышение энергии ионизации в подгруппах d-элементов вызвано эффектом проникновения электронов к ядру. Согласно квантовой теории внешние электроны проникают ближе к ядру под d-подуровень. Это приводит к повышению прочности связи внешних электронов с ядром.

Данные по значениям первой энергии ионизации для значительного числа атомов представлены в таблице…

3.4.3. Сродство к электрону и характер его изменения.

Способность атома присоединять электроны может быть количественно оценена энергией, которую обозначают понятием «сродство к электрону».

Сродством к электрону называют количество энергии E, которое выделяется в результате присоединения электрона к нейтральному атому и превращением его в отрицательно заряженный ион.

А+е=А

Сродство к электрону выражается в тех же единицах, что и энергия ионизации (кДж/моль или ЭВ/атом). Однако экспериментально его определить труднее, чем энергию ионизации. Поэтому надежные значения Е получены лишь для небольшого числа элементов. По имеющимся данным можно сделать однозначный вывод о закономерности изменения сродства к электрону по периодам и группам.

Характер изменения сродства к электрону рассмотрим на примере элементов второго периода и главной подгруппы седьмой группы показан на рис.3.5.


Li Be B C N O F Ne ЭВ/атом

0,57 -0,6 0,2 1,25 -0,1 1,47 3,6 -0,57

3,8 – Cl

Увеличение сродства к

электрону 3,5 – Br

3,3 – I

– At рис.3.5.

Из приведенного рисунка следует, что в периоде от начала к концу сродство к электрону увеличивается, а в группах увеличение идет в направлении снизу вверх. Можно сделать такой вывод: чем меньше радиус атома, тем легче к нему присоединяется электрон, тем больше высвобождается энергии и, следовательно, больше сродство к электрону. Однако монотонности в изменении сродства к электрону нет, как и не было ее в изменении энергии ионизации.

Для элементов VII A группы, обладающих в своих периодах наименьшими радиусами, величина сродства к электрону наибольшая. Наименьшее значение сродства к электрону и даже отрицательное значение имеет место у элементов с электронными структурами s2(Be, Mg, Ca), s2p6(Ne, Ar, Kr) и с наполовину заполненным p-подуровнем, т.е. структурой s2p3 (N, P, As). Это служит дополнительным доказательством повышенной устойчивости указанных конфигураций.

Изменение сродства к электрону в ряду d-элементов покажем на примере d-элементов 4-го периода.

Sc

Ti

V

Cr

Mn

Fe

Co

Ni

Cu

Zn

Е ЭВ/атом

–0,40

0,15

0,65

0,85

–1,20

0,1

0,70

1,10

1,40

–0,9

электронная конфигурация

s2d1

s2d2

s2d3

s1d5

s2d5

s2d6

s2d7

s2d8

s1d10

s2d10

Здесь тоже устойчивые конфигурации s2d5, s2d10 имеют отрицательное значение сродства к электрону. Принцип изменения сродства к электрону в ряде d-элементов такой же как у ряда s- и p-элементов.

Еще раз обратимся к характеру изменения Е в группах. Из данных, приведенных для галогенов, видно, что величина сродства к электрону у фтора (3,6) меньше, чем у хлора (3,8). Такую аномалию можно объяснить отталкиванием электрона в плотно заполненном 2р-подуровне. Такие аномалии встречаются у элементов других групп.

3.4.5. Изменение электроотрицательности.

Для того, чтобы решить вопрос: атом данного элемента легче теряет или присоединяет электрон – необходимо учесть энергию ионизации I и сродство к электрону Е. Сумму энергии ионизации и сродства к электрону называют электроотрицательностью (ЭО). Например, для нахождения электроотрицательности атома фтора (ЭОF) необходимо суммировать его энергию ионизации (IF) и сродство к электрону (ЕF).

ЭОF= IF + ЕF =1736,36+339,74=2076,2 кДж/моль

Электроотрицательность измеряется в тех же единицах, что и энергия ионизации: кДж/моль или ЭВ/атом.

Однако для удобства применения вместо абсолютных значений электроотрицательности (кДж/моль или ЭВ/атом) используют значения относительной электроотрицательности (ОЭО или . За единицу относительной электроотрицательности принята электроотрицательность атома лития.

ОЭО=ЭОLi=ILi+ELi=

Cоответственно определены величины ОЭО всех элементов. Их значения приведены в таблице 3.4.

Характер изменения относительной электроотрицательности элементов рассмотрен на примере элементов второго периода и главной подгруппы первой группы. (рис.2.6)

Можно сделать следующий вывод: чем меньше радиус атома, тем больше значение электроотрицательности.

Электроотрицательностью называют свойство атома притягивать к себе электроны.

Наименьшим значением электроотрицательности обладают s-элементы, поэтому щелочные металлы легко отдают электроны. Их можно назвать наиболее электроположительными элементами. В противоположность щелочным металлам, галогены имеют большую электроотрицательность, поэтому они легко притягивают к себе электроны и с большим трудом отдают их.


Li Be B C N O F

1 1,5 2,0 2,5 3,0 3,5 4,0

Na – 0,97

K – 0,91 Увеличение 

Rb – 0,89

Cs –0,86

Fr – 0,7 рис. 3.6.

Наименьшим значением обладает Fr(0,7) а наибольшим значением обладает F(4,0). Понятие электроотрицательности служит также мерой относительной способности атомов в молекуле притягивать к себе электроны или оттягивать на себя электронную плотность.

Характеристики

Тип файла
Документ
Размер
1,19 Mb
Материал
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6787
Авторов
на СтудИзбе
279
Средний доход
с одного платного файла
Обучение Подробнее