165292 (739462), страница 3

Файл №739462 165292 (Основы химии) 3 страница165292 (739462) страница 32016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

–структура ядра атома может быть выражена следующей формулой:

Zp+(A–Z)n

Например, структура ядра атома фтора /А=19, Z=9/ будет 9р+10n, т.е. в состав ядра атома фтора входит 9 протонов и 10 нейтронов. Так как заряд ядра /Z/ и массовое число /А/ являются количественной характеристикой атома любого элемента /Э/, то он ставятся в виде индексов возле символа данного элемента AZЭ, например для фтора 199F или для серебра 10847Ag.

Элементы, ядра атомов которых содержат одно и то же число протонов но различное количество нейтронов, названы изотопами, например, цинк /Z=30, A=64; 66; 67; 68;70/ имеет изотопы 6430Zn, 6630Zn, 6730Zn, 6830Zn, 7030Zn.

Атомы элементов, имеющие одинаковые массовые числа, но различные заряды ядер, названы изобарами, например: 4018Ar, 4019K, 4020Cr.

Химическим элементом называют вид атомов, обладающих одинаковым зарядом ядра.

Наряду с протонами и нейтронами в состав ядер атомов входят и другие элементарные частицы, например, мезон. /Мезоны в двести-триста раз тяжелее электрона/. Существует мнение, что мезоны обуславливают ядерные силы, которые приводят к образованию прочных и компактных ядер из протонов и нейтронов. Этот аспект рассматривается в курсе ядерной физики.

2.1.2. Двойственная природа электрона.

Электроны, как элементарные частицы, проявляют корпускулярно-волновой дуализм. Они являются частицами и проявляют волновые свойства.

Любая частица представляет собой сосредоточение вещества в малой части пространства. Следовательно, как частицы электроны обладают массой me и зарядом е.

Масса электрона me =9,11*10–28г. /в 1837,11 раз меньше массы атома водорода/. Заряд электрона е=1,6*10–19 Кл/ или 4,8*10–10 эл.ст.ед./. Движение электрона как частицы должно характеризоваться, с одной стороны, траекторией, т.е. координатами и, с другой стороны, скоростью в данный момент времени.

Однако в движении электроны проявляют волновые свойства. Этот процесс происходит в объеме трехмерного пространства и развивается во времени, как периодический процесс. Характеристикой волны является длина волны, ее частота, скорость движения и амплитуда с определенным знаком. Следовательно, электронный поток характеризуется длиной волны , которую можно оценить с помощью уравнения Луи де Бройля /1924г./:

=h/mv

Здесь h–постоянная Планка /h=6,62*10–34 Дж/, m–масса электрона, v–скорость электрона.

Можно сказать, что уравнение де Бройля объединяет характеристику волнового процесса // и корпускулярного движения /mv–импульс/. Волновая природа электронов подтверждена экспериментально полученной картиной интерференции и дифракции электронов.

Неопределенность в поведении электрона.

Поскольку электрон обладает волновыми свойствами, то его движение не может быть описано определенной траекторией. Траектория «размывается», возникает область /полоса/ неопределенности, в пределах которой и находится электрон.

В связи с этим, для электрона, как микрочастицы, применим принцип /соотношение/ неопределенности Гейзенберга /1927/, который гласит, что в любой момент времени невозможно одновременно точно определить и положение электрона в пространстве /его координату/ и его скорость /импульс/, минимальная возможная неточность равна h.

Математически принцип неопределенности можно выразить так:

(px)(x)=>h

Здесьpx –неопределенность в величине импульса,

x – неопределенность в положении частицы в пространстве,

h – постоянная Планка.

Так как h– величина постоянная, то из принципа неопределенности следует, что чем точнее будем определять импульс электрона / его скорость /, тем большую будем допускать ошибку в определении его координаты, т.е. местонахождения.

В соответствии с принципом неопределенности траекторию электрона нельзя рассматривать со строгой математической точностью, как боровскую орбиту, существует область неопределенности, в которой может двигаться электрон. Поэтому следует говорить только о вероятности того, что электрон в данный момент времени будет в данном месте пространства атома.

В квантовой механике имеют дело со статическими принципами и вероятностным характером поведения электронов. Область пространства атома, внутри которой существует наибольшая вероятность нахождения электрона, называется орбиталью.

2.1.3. Волновая функция и волновое уравнение.

Так как электронам присущи волновые свойства и они обладают неопределенностью положения в пространстве, их движение характеризуется при помощи волновой функции и описывается волновым уравнением. Физический смысл волновой функции заключается в том, что ее квадрат 2 пропорционален вероятности нахождении электрона в элементарном объеме атома V с координатами x, y, z.

Значение волновой функции находят при решении волнового уравнения Шредингера:

2/x2 + 2/y2 +2/z2 +82m/h2*(E–U)=0

В этом сложном дифференциальном уравнении с частными производными: Е–полная энергия частицы, U – потенциальная энергия, –волновая функция.

В олновая функция, получаемая при решении уравнения Шредингера, может иметь ряд значений. Эти значения зависят от квантовых параметров n, l, me, названных квантовыми числами

n

l

me

В итоге – значения квантовых чисел есть не что иное как результат решения уравнения Шредингера. Следовательно, при решении уравнения Шредингера получены значения волновой функции и возможные /допустимые/ значения квантовых чисел.

2.1.4. Квантовые числа. Атомные орбитали.

Так как электрон имеет четыре степени свободы, то для характеристики его поведения в атоме требуется четыре квантовых числа.

Главное квантовое число n определяет удаленность атомной орбитали от ядра и характеризует общий запас энергии электрона на данном энергетическом уровне. n принимает целочисленные значения от единицы до бесконечности. В зависимости от цифровых значений главного квантового числа приняты буквенные обозначения квантовых уровней n=1, 2, 3, 4,…

обозначение К, L, M, N,…

Чем больше n, тем слабее электрон связан с ядром и более емким становится квантовый уровень. Числовые значения n определяют также и количество подуровней, содержащееся на данном квантовом уровне /т.е. числовые значения n определяют емкость квантового уровня/. Так, если n=3, то это значит, что имеем третий квантовый уровень, который состоит из трех подуровней.

Орбитальное квантовое число l характеризует момент количества движения электрона относительно центра орбитали. Наличие такого движения приводит к делению квантового уровня на подуровни. Орбитальное квантовое число характеризует так же пространственную форму электронного облака. Это квантовое число предопределяется главным квантовым числом n и принимает ряд целочисленных значений от нуля до n–1. В зависимости от числовых значений l приняты буквенные обозначения подуровней:

n=1, 2, 3, 4,…

l=0, 1, 2, 3,…,–1

обозначение подуровня: s, p, d, f,…

ф орма орбитали

Магнитное квантовое число ml характеризует магнитный момент электрона. Определяет ориентацию квантового подуровня в пространстве. Число проекций подуровня на направление магнитных силовых линий квантуется и оно равно количеству орбиталей на данном подуровне. Можно сказать, что магнитное квантовое число определяет количество орбиталей на подуровне. ml принимает значения от –l через ноль до +l.

ml = –l,…,+1, 0, –1,…, +l.

Рассмотрим подуровень s. Для него: l=0, ml=0


H рис.2.1.

У подуровня шарообразной формы может быть только одна проекция. (рис.2.1.), имеющая значение «ноль». Следовательно, на s -подуровне только одна s-орбиталь.

П одуровень Р имеет l=1, а ml = –1, 0, +1

l=1

В данном случае согласно правил квантования уже три проекции.

С ледовательно на р-подуровне три р-орбитали. рис2.2.

Для d-подуровня: l=2, ml = –2, –1, 0, +1, +2. Это значит, что согласно квантовой теории d-подуровень состоит из пяти d-орбиталей.

Подуровень f имеет l=3, ml = –3, –2, –1, 0, +1, +2, +3. Следовательно f-подуровень состоит из семи f-орбиталей.

Число орбиталей на подуровне можно определить из выражения ml =2l+1:

значение l: 0, 1, 2, 3, …….

подуровень: s, p, d, f, …….

число орбиталей: 1, 3, 5, 7, …….

Спиновое квантовое число ms характеризует собственный момент количества движения, возникающий как бы из-за «вращения» электрона вокруг собственной оси. Принимает два значения: +1/2 и –1/2, что соответствует двум возможным направлениям вращения электрона.

ms= +1/2; –1/2.

Оно получено из опытов Штерна и Герлаха.

Рассмотренные квантовые числа определяют энергию электрона, объем и форму пространства, в котором вероятно его пребывание в околоядерном объеме, т.е. размер, форму и ориентацию орбитали в пространстве.

Так как волновая функция является решением уравнения Шредингера при всевозможных значениях квантовых чисел, то можно сказать, что волновая функция является в свою очередь функцией рассмотренных квантовых параметров n, l и ml, где:

n= 1, 2, 3, 4,…,

l= 0, 1, 2, 3,…,n–1

ml=–l,…, –1, 0, +1,…, +l

Атомные орбитали. Так как вероятность нахождения электрона в пространстве далеком от ядра очень мала, когда говорят об орбиталях, то имеют в виду такую область вокруг ядра атома внутри которой сосредоточено 90–95% электронного заряда. С точки зрения квантовой механики атомные орбитали являются геометрическим изображением волновой функции  (n, l, ml).

Z Электронное облако. Если бы в каждый момент времени

y определяли положение электрона в трехмерном пространстве и

ставили в том месте точку, то через множество таких определений

X получили бы картину в виде пространственного облака изображен-

ного точками с размытыми краями /рис.2.3.)

рис.2.3.

Т акое зарядовое облако называют электронным облаком. Его плотность, пропорциональная 2, является непосредственной мерой вероятности нахождения электрона. Граничная поверхность облака, внутри которой содержится 90–95% электронного заряда, дает форму орбитали.

Z s-орбиталь. Она существует при l=0. Значение ml тоже равно

Y нулю. Имеем только одно значение ml =0. Следовательно,

s-орбиталь имеет максимальную симметричность. У нее

X сферическая форма (рис.2.4.). В этом случае вероятность на–

хождения электрона в околоядерном пространстве определя–

рис.2.4. ется только радиусом-вектором и не зависит от угла координат.

Радиальное распределение электронной плотности для 1s

электрона соответствует кривой с максимумом (рис.2.5.).

Максимум распространения вероятности находится на

0 r1 r,A0 расстоянии от ядра r1, которые соответствует радиусу

Характеристики

Тип файла
Документ
Размер
1,19 Mb
Материал
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6791
Авторов
на СтудИзбе
279
Средний доход
с одного платного файла
Обучение Подробнее